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A long slender axisymmetric body is considered placed at rest in a general
linear flow in such a manner that the undisturbed fluid velocity is identically
zero on the body axis. Formulae for the total force and torque on the body are
found as an expansion in terms of a small parameter x defined as the radius-to-
length ratio of the body. These general results are used to determine the
resistance to axial rotation of the body and also the equivalent axis ratio of
the body for motion in a shear flow.

1. Introduction

The behaviour of a long slender solid body of circular cross-section in a given
creeping motion flow has been considered by Cox (1970) and Tillet (1970), while
Batchelor (1970) has examined the behaviour of such bodies of non-circular
cross-section. Neglecting fluid inertia effects, Cox (1970) obtained the force per
unit length acting on the body by the fluid as an asymptotic expansion in. terms
of a parameter « defined as the ratio of the cross-sectional radius to body length.
This theory, although successful in giving the translational resistance for
such bodies, failed to give any results for cases in which the undisturbed flow
field U(r) was identically zero on the body centre-line. One very important
example in which this difficulty arises is concerned with the motion of a long
thin axially symmetric solid body in shear flow.

Relative to a fixed system of axes, consider an undisturbed shear flow U(r)

given by U(r) = (0,0, 7,). (1.1)

Into this flow field an axially symmetric solid body with fore-aft symmetry
is placed, the orientation of the body being determined by spherical polar angles
# and ¢ (see figure 1). If such a body is free to move, then, for the case of the body
being an ellipsoid of revolution, it was shown by Jeffery (1922) that the motion
of the body is periodic and given by

7
tan @ = m,
tan ¢ = r, tan (2at/T), (1.2)
where 7 is the period of the motion and has the value
T = @nfy) (r, +75%), (1.3)
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the quantity », being the axis ratio of the ellipsoid. The constant ' appearing
in (1.2) is called the orbit constant and depends only upon the initial orientation
of the body. Bretherton (1962) showed that the above formulae (1.2) and (1.3)
were valid for general axisymmetric bodies with fore-aft symmetry, the constant
r, no longer being equal to the actual axis ratio of the body but being a function
of the complete body shape. This constant r, is therefore termed the ‘equivalent
axis ratio” of the body. The formulae (1.2) and (1.3) were verified experimentally
for cylindrical bodies (rods and disks) by Trevelyan & Mason (1951), Mason &
Manley (1956), Bartok & Mason (1957) and Goldsmith & Mason (1962) and for
ellipsoidal bodies by Taylor (1923) and Anczurowski & Mason (1968).
From the equations (1.2) it may readily be shown that

g __v
dt 241

(sin? ¢ + 72 cos? ). (1.4)

Consider a body moving in an orbit €' = oo so that the motion is entirely in the
75,73 plane (8 = 47). Then, when the body axis is in the r, direction, the angular

velocity is dp v
dt 241

and, when in the r, direction, the angular velocity is

¢ _ v
i ri+1°

Hence 72 is the ratio of the angular velocity of the body when its axis is in the 7,
direction to that when its axis is in the 7, direction. Now consider the body held
firmly at rest with its axis in the r, direction. The fluid would then produce a
couple on the body of magnitude G’ say. Similarly for the body held firmly at
rest with its axis in the r; direction, it would experience a couple of magnitude
(/" say. The couples @’ and G" on the body must be proportional to its angular
velocities if they were free to rotate in the above orientations. Thus one sees that
the equivalent axis ratio r, is given by

r, = (G'|G")3. (1.5)

The value of ¢ may be evaluated by using the results given by Cox (1970).
However, G” cannot be evaluated since, for the body at rest with its axis in the ,
direction, the undisturbed flow field U(r) is identically zero on its centre-line.

In the present paper we therefore consider a long slender solid body of circular
cross-section placed in a given creeping motion flow field U(r) which is identically
zero on the body centre-line. For simplicity it is assumed that the body centre-
line is straight and that the low U(r) increases linearly with distance from an
origin. The total force and torque acting on the body are found as an asymptotic
expansion in terms of the body radius-to-length ratio . It is also shown how these
results are modified by the presence of solid walls near the body considered.

In the final sections the general results are used to determine the rotational
resistance and the equivalent axis ratio r, for long slender axisymmetric bodies
with fore-aft symmetry.
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2. General problem

Consider a long slender body 8§ of circular cross-section, the length of the body
being 2¢ and a characteristic value of the cross-sectional radius being b (b <€ {).
It is assumed that the body centre-line is straight so that one may take rectan-
gular Cartesian axes with the 1 axis lying along the body centre-line, the origin
of co-ordinates O lying at the mid-point between the ends of the body (see figure 1).
This body is assumed to be placed in a fluid of viscosity g. Then, by using dimen-
sionless quantities based upon the length a, the viscosity # and a characteristic
velocity U, one defines a dimensionless position vector r relative to the co-
ordinate system. The dimensionless cross-sectional radius of the body may be

1

Ficure 1. Spherical polar axes.

written as kA(r;), where « is the ratio b/a and A(r,) is a dimensionless function of
r1(—1 < ry < +1). The two ends of the body are then r, = £ 1. It will be assumed
that the shape of the body § determined by A(r,) is such that (i) A(r;) is a con-
tinuous function of #;, and (ii) A(—1) = A(+1) = 0. Thus blunt-ended bodies
such as a cylinder of finite length are omitted from the present theory. This is
because it will be shown that for such cases the effect of flow around the body
ends dominates over the effects of the flow around the rest of the body.

It is assumed that the fluid into which the body S is immersed is undergoing
a motion U(r) which satisfies the creeping motion equations

V2U~VP =0, V.U=0, (2.1)

P being the dimensionless pressure field corresponding to U. It is assumed that
the body 8 is held fixed and that the flow field U(r) is identically zero along the
r, axis. Also it is assumed that U(r) varies linearly with r so that

U=4,r, and P =0, (2.2)

'
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628 R.G. Cox
where 4;; is a constant second-order tensor. Now since U = 0 for all r, if
ry = 73 = 0, it follows that A, =0 foralls. (2.3)
Hence U= Apry+ Aprs. (2.4)
Changing to cylindrical polar axes (see figure 2) p, 0, 2z defined by

ry=2, f,=pcosl, ry=psind, (2.5)
the components U, Uy, U, of U relative to these axes may be written in the form

U, = U,cos 64 Ussind,

Uy = Uycos 0 —U,sin 6, (2.6)
U, =10,

1

a
z
0
3
g
p
\} 2

Freurk 2. Cylindrical polar axes with the z-axis lying along body centre-line.

which, by making use of (2.4) and (2.5) and also by observing that A,,+ A4, = 0
(from the equation of continuity V.U = 0), may be transformed into

U, = Apcos 20+ Bpsin 20,

Uy = — Apsin 20 + Bp cos 20 + Cp, 2.7
U, = Dpcosf+ Epsin 6,
where A=Ay, B=3{dy+4s,),
O=3(d3—Ay), (2.8)

D=A, E=A,

The complete velocity field (i.e the flow field U together with the disturbance
flow produced by the body S) is defined as u, this flow field also satisfying the

creeping motion equations
Vau-Vp =0, V.u=0, (2.9)

p being the pressure field corresponding to u.
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One makes expansions of this flow field (u, p) in terms of the parameter
K =bla (2.10)

in a manner similar to that used by Cox (1970) by defining an oufer expansion in «
for which risused as the independent variable and u and p as dependent variables.
At each point P of the centre-line of the body S one may define an inner expansion
in «k for which T is used as the independent variable and @ and 7 as dependent
variables, where T, Ti and p are given by

F=(r—r*/k, i=u, p=c«p, (2.11)

where r* is the position vector of the point P. In the outer expansion, @ is the
unit of length and, as k- 0, the body 8 becomes a line singularity (i.e. b > 0)
along the r; axis from r; = —1 to r; = +1, whereas, in the inner expansion at
each point P of the centre-line, the unit of length is 4 and, as x — 0, the body 8
becomes very much like a cylinder of infinite length (since @ —> co0). Actually one
has an infinite number of inner expansions corresponding to each point of the
centre-line of the body 8. However, all such inner expansions may be considered
simultaneously by taking a general point P of the body centre-line. The inner
expansionat such a point is then matched onto thesolution for the outer expansion
at the same point P.

3. Inner expansion
Consider the flow in the neighbourhood of a general point P on the centre-line
of the body S. Since the undisturbed flow U(r) given by (2.7) is independent of 2,
it follows that, in inner variables for the inner expansion at P, this flow is given by
U, = Axp cos 20 + Bxpsin 20,
Uy = — Axpsin 20 + Bkp cos 20 + Ckp, (3.1)
U, = Dkpcos 0+ Expsin 0,
the co-ordinates (p, 8, %) being the polar co-ordinates of the inner expansion, i.e.
p=plk, zZ=(z—2%)k, (3.2)

where 2* is the value of z at the point P.

Expressing (2.9) for the total flow field (u,p) in cylindrical polar co-ordinates
(p, 0,z) and changing to inner variables (p, 0, %), one obtains for the components
Uy, Ug, Uy of the inner flow field,

1£(~@ 10w, o, 20w ¥, 0p_
sp\Pop) TP er T @ pred PR oop
10 (au,) 104, @, 20, 4, lp_
pop\" op) " pr oo &= "prod pt paod (3.3)
10 (_ou) 1 0%, o%u, op )
B b S it Sl S (Y )
pop\"op) "preor " e -
1¢,___ . louw, o,
I[:)éﬁ(pup)+536—+§—0
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Thus, writing (@, %) in an expansion of the form

ﬁ=Kﬁ1+K2ﬁ2+,} (3 4)

D= Kp;+K¥py+ ...,
it is seen that both the flow fields (@i,, p,) and (0i,, p,) satisfy equations of the

form (3.3). Also, on the surface of the body S, one requires the no-slip boundary
condition to apply, i.e.

=0 on S (3.5)
Now,in the neighbourhood of P, the surface of S may be written in outer variables
as p = K[A(2*) + (z —2*) dAJdz* +...], (3.6)
which, when expressed in inner variables, becomes
P = A(z*) +kzdA[dz* +.... (3.7)
Therefore the inner boundary condition on (i1, p) becomes
=0 on p=Ar*)+kzdA][dz*+.... (3.8)
One therefore lets 4,=0 on p=A*%), (3.9)
so that the value of @i; on p = A(z*)+ kZ (dA[dz*) + ... is
(ﬁl)S=K§%<%)A+M’ (3.10)

where (011,/07), is the value of 901, /¢p evaluated on p = A(z*). From the expansion
(3.4), it is seen that, on p = A(z*)+«Z(dA/dz*)+ ..., @ has the value

dA (on
i) = K210 2 1
(ul)s_Ku2+KZdz*<6,b‘)A+'"’ (3.11)
so that the boundary condition (3.8) reduces to
_ _ dA oty ik

In order to obtain the first-order flow field (@, %,), one solves equations of the
form (3.3) with inner boundary condition (3.9). From the form of equations (3.1),
it is reasonable to assume an outer boundary condition for (fi,, p,) of the form
(w), ~ Ap cos 20 + Bpsin 20,
(uy)g ~ Apsin 260+ Bp cos 260+ Cp, (3.13)
(#), ~+Dpcostf+Epsing as p - 0.
Therefore the flow field (i,, ;) is independent of Z and so it may be shown that
this flow field, in order to satisfy equations (3.3) and possess the asymptotic
form (3.13), must be of the form
(1), = cos 20[Ap +a, p~1 + ayp%] +sin 20[Bp + agp~" + a4 p~?],
(1) = sin 20[ — Ap +ayp=3] + cos 20[Bp — o, p*] + [CP + 05 p71],
(@), = cos O[Dp + P11 +sin O[Ep + o, 511,
Py = cos 20[20t, p~2] +sin 20[2a5p 2],

(3.14)
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where a,,a,,...,, are constants which may be determined by applying the
inner boundary condition (3.9). Thus the first-order inner flow field (ii,, p;) may
be written as

(), = A(P— 24271+ A%p~3) cos 20 + B(p — 2A%5~1 + A%~?) sin 26,
(y)p = A(—Pp+A%~3)sin 20 + B(p — A%~3) cos 20 + C(p — A%1),
(%), = D(p— A%5~1) cos O+ E(p — A2p~1)sin G,

Py = — 442 cos 20 — 4BA%5—2sin 26).

Il

(3.15)

On the surface p = A, the value of 9%,/dp is therefore given by
8(1,), /P = 0,
Uy)g/0p = — 4A sin 26 + 4B cos 20 + 20, (3.16)
y),/0p = 2D cos 6+ 2E sin 0,

so that the boundary condition (3.12) on the second-order inner flow field (&, 7,)
may be written as

(@y)y = —2(dA[dz*) (— 4 A sin 260 + 4B cos 20 + 20), (3.17)
(#y), = —z(dA[dz*) (2D cos 0+ 2K sinf) on p = A(z¥).
Thus the flow field (G, p,) satisfies the equations (3.3) with an inner boundary
condition given by (3.17). However, no outer boundary condition will be imposed
on this flow field at this stage since this will be determined by the matching of
inner and outer expansions. Therefore one may write

G, =0f +0;, P,=7s +0a, (3.18)

where (G, 7¥) is any particular flow field satisfying (3.3) with boundary con-
ditions (3.17), so that the flow field (@iy, ;) also satisfies (3.3) but satisfies the
boundary condition

G, =0 on p=A(z%). (3.19)

For the flow field (G}, P¥), one may take

(#3), = Zcos 20(8,p + Bop~®) +Zsin 20(8,p1 + f5p°) + cos OBy + 10 ~?)
+sin (S, + f13p~%),

(u3)y = Zsin 20(B,p=*) + 7 cos 20( — B;572) +2(f, p7) +sin.0(f + f15P2)
+ 08 0(f13— fr5P~?),

(), = 08 20(~ 31 + B3P %) +5in 20( — 35, + 5P %) +Z cos 6( — B — B) P
+28inf(—fu+pr) Pt

Dy = Zcos 260(2,p~2) +Z sin 20(2,5~2) + cos 6{2(Bs + B,) 1}

+sin 0{2(fy, — B12) P}, (3.20)



632 R.G.Cox

which satisfies (3.3) identically for all values of the constants £y, 85, 0, --., f1s-
Using the boundary conditions (3.17) in order to determine these constants, it
is seen that the flow field (Tif, 7¥) may be taken to be

(uy ), = zcos 20(4AAdA[dz*) (— P2+ A%573) + Zsin 26(4 BA dA[dz*)
X (=P 1+ A%p73) + cos (DA dA[dz*) (1 — A%—2)
+sin O(EA dA[dz*) (1 - A%572),

(u3)s = 2sin 20(4AA dA[dz*) (A2p~3) +Z cos 20(4BAdAd=z*) (—
+25-1(— 20X dA/dz*) + sin O(DA dAJdz*) (1 — A25-2)

/\2'5—3)

(3.21)

+ cos O(EAdAjdz*) (

—1+4+A%p72),

(@), = cos 20(2AX dA[dz*) (1 — A25—2) + sin 20(2BA dA[dz*) (1 — A%p~2)

+2zcos0(—2DAdA[dz*)p~+2zsin O( — 2EA dA[dz*) p
Pa = zc08 20( — BAAdA[dz*) p—2+ Zsin 20( — 8BAdA[dz*) p—2
+cos 0(4DAdA[dz*) p~1+ sin O(4EA dA[dz*) ot

[Note that this flow field (G5, 75) does not tend to zero as - c0.] By (3.4) and

(3.18) the complete inner flow field (i1, p) is
B = ill, + K2(0 + 85) + 0(), |
B B I (3.22)
P = KPy+ KD} +75) + 0(x9), |

where (&i,,7;) and (iif,p5) are given respectively by the equations (3.15) and
(3.21), the flow field (i3, ps) not yet being determined. Expressing the velocity

field (x@i, +«20) and pressure field (p, +«P3) in terms of outer variables, one
obtains
k() ,+«*® = {Ap cos 20 + Bp sin 20} + ¥ — 24 A2p cos 20 — 2BA%p~1sin 26

—(z—2*)(44A d/\/dz"‘)p“1 cos 20
—(2—2%) (4BAdA[dz*) p~tsin 20
+ (DA dA[dz*) cos 6 + (EA dA[dz*) sin 0} + O(k?),

= {— Apsin 20+ Bp cos 20 + Cp}
+ & — CA%p~1— (2CA dA[dz*) (2 — 2*) p~L
+ (DAdA[dz*)sin 6 — (EA dA[dz*) cos 0} + O(x%),

= {Dpcos 0+ Epsin 6}
+ &Y —DA%p1cos 0~ EA%01sin 0 + (24 A dA[dz*) cos 20
+(2BAdA[dz*) sin 26 + (2 — 2%) ( — 2DA dA/dz*) p~L cos 0
+ (z—2%) (— 2EAdA[dz*) p~Lsin O} + O(k*%),

D1+ KkDx = k2 —4A4AA%~2 cos 20 — 4BA%p~2gin 20
+(z—2%)(—84AdA[dz*) p~2cos 20
+ (2 —2%) (— 8BAdA[dz*) p~2sin 20 + (4DA dA/dz*
+ (4EAdA[dz*) p~Lsin 0} + O(k*).

k() + K23 )

K (%), + *(u

yp~Llcos O
(3.23)

In this equation (3.23), the quantity A? is evaluated at z = z*. Thus, by noting

that

A%(z) = A2(2*) + 2(z — 2*) A(2*) dA[dz* + O(|z — 2*|?),
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(3.23) may be rewritten in the form

K (W), + K% = {4p cos 20 + Bpsin 26}
+k2{—24A%1 cos 20 — 2BA%p~1sin 20
+(DAdA[dz) cos 0+ (EA dA[dz) sin 6} + O(x*),
K(Uy)g+ 23 )y = { — Apsin 20 + Bp cos 26 + Cp}
+ k% — CA%p~1+ (DA dA/dz) sin 0 — (EA dA[dz) cos 0}
+0(x%),
k(%) + k*(uy), = {Dp cos 6 + Epsin 0} + k% — DA%p~' cos 0
—EX%01gin 0+ (24A dA/dz) cos 20
+(2BAdA[dz)sin 20} + O(x*),
DL+ KDy = k2 —4AA%p~2 cos 20 — 4BA%p—2sin 20
+(4DAdA[dz) p~cos 0+ (4EAdA[dz) p~sin 0}
+0(x%),

(3.24)

where the value of A is now evaluated at z instead of 2*. In the terms of order 2
in the above equation (3.24), the expressions for the velocity are valid to O(p°)
if dA/dz is also evaluated at z instead of 2*.

4. Outer expansion

For the outer expansion, the body S becomes a line singularity along the
ry axis from 7, = —1 to r; = + 1 and near this singularity the outer flow field
(u,p) must be matched onto the inner expansion. Since the velocity field
(kT +«20F) and pressure field (p; +«p3) when expressed in outer variables is
given by (3.24), it is reasonable to expect the outer velocity and pressure fields
to be expandable in the form

u=U+k%,+..., p=«¥p,+..., (4.1)

where U(r) is the undisturbed velocity field given by (2.7). It is seen that the
term of order «? in {3.24) matches onto the term of order «? in (4.1). Also com-
paring terms of order «2, it is seen that, as p — 0, one needs

(ug), ~ (—2A4A%cos 20 — 2BA%sin 20) p~
(ug)g ~ (—CA%)p~
(uZ)z ~ (—DA%cos 0 EA%sin 0) p—

~ (—44A%cos 20 —4BA%sin 26)

(4.2)

Since we require that u ~ U as r — oo, the outer boundary condition on (u,, p,)

is that
u,—>0 as r-—oo. (4.3)

Also the flow (u,, p,) must satisfy the creeping motion equations. It is therefore
seen that the boundary conditions (4.2) and (4.3) can be satisfied by taking
(1, py) to be a flow produced by a line of force doublets on the r, axis from
r, = —1 to r, = + 1. However, the creeping motion flow satisfying boundary
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conditions (4.2) and (4.3) is not unique since one could add on a line of force
singularities on the r; axis from »; = —1 to ; = + 1. Therefore one may write

U, = Uz +uy, P, =ps+ps, (4.4)

where (uy, p3)is a flow field satisfying the creeping motion equations and boundary
condition (4.3) and has the property that, for |r,| <1

u,=o0(pl) as p-—0. (4.5)
The flow field (u¥, p¥) then satisfies the boundary condition (4.2) and is the flow
produced by a line of force doublets given by

®y if“ i Oy (ri—R,) (r;—R,)
(uZ )i - 87 __lgjk(Rl) 37‘k [r—Rl + Ir_ng dRp

+1

R M A e S
where R is the vector (B,,0,0) of a general point on the line singularity, and
g;.(R,;) is the magnitude of the force doublet at r = R. We now examine the form
of the velocity u near the line singularity. Thus consider points r = (r;,7,,73)
with |r,| < Landr, = pcosf, ry = psin & with p < 1. The integrals in (4.6) have a
singularity in the integrand at R = rif the point r actually lies on the singularity.
Thus the range of integration —1 < R; < 1 is divided into the three separate
intervals —1 < B, <r—er—e< B <r+ecandr,+e < B; < +1,wheree <1

is arbitrary and 1ndependent of p.
The contribution to the velocity field uf from the force doublets g,,(R,) is

(4.6)

given by ) = (1/87) (+ ), (4.7)
A 0 6y | (ry—R)(r~Ry)

where I = J‘ g12(y )27'2 l:}r K| + T—R[° ]dR (4.8)
noe O (ri— R)) (r,— Ry)

and {f J‘l”} g12(R [lr K| + ]r—R1|3 } dR,. (4.9)

The integral I; may be evaluated by noting that B, is approximately equal to »,
in the range of integration. Thus, by changing variables from R, to ¢ where

Ry =r+ptang, (4.10)
and noting that one may write for R, in the range of integration
g1a(By) = g1o(ry) +ptan ¢ 8g,pfor; + ..., (4.11)

it is seen that I, may therefore be written as
]
L P —tan—1(e/p)
+ 8;5( —sin @ + 3 cos® fsin ¢ cos? @) + 38,3 sin & cos Osin ¢ cos? ¢} de

{8;1( — cos 0 cos ¢ — 3 cos Osin? ¢ cos @)

+tan=1(e/p)
3912(7’1)f :8“( —cos fsin ¢ — 3 cos fsin® @)
07'1 —tan=1(e/p)

in2
+ 38, (—SCI(I:S;:+ 3 cos2sin? ¢ cos ng) + 383 sin 0 cos 0 sin? ¢ cos ¢} d¢
+...,
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which may be evaluated to give
I; = —4gy5(ry) 6y p~tcos O+ 222 912 612 Inp
7
912{612 —~In4—2Ine+2+2cos26) +25;,5sincos O} +.... (4.12)

The integral J; may be simplified by noting that there is no singularity in the
range of integration even if r lies on the r, axis. Thus J; must be of O(p°) as p — 0
and may be evaluated to this order by simply putting p = 0 in the integrand.

Thus e _R)
gy = a,sz f }912 ~UR,. (4.13)
rte |7'1 1i

This expression is singular in € as € - 0 but this singularity may be shown to
exactly cancel out the singularity of —26,,(dg,,/0r,)Ine appearing in the ex-
pression (4.12) for I, so that the value of u¥ tends to a finite limit as ¢ - 0. In
a similar manner, the contributions of the force doublets ¢,3, gos, I3, Jop aNd g5
to I; and J; and hence to the flow field uf may be found. Then assuming that
J11> Jo1 and ¢, are zero (since their contribution to uf may be transformed into
that due to a line force distribution and so may be included in the flow field uy),
all the contributions to uf may be added to give the asymptotic form of uf
near p = 0, [r;| < 1 as being

8m(uf)y ~ p[— 4915 c0s 0 — 4g,5sin 0]

922 3933 nTe o2+ Gaz) (1 — By)
rinp[ G2 eofe] s [T ] JOnt e tlar,

+ [ 6g23s1nl900546?+ 2 g32sm000s0
ory ory

+%( In4—2Ine+2+2cos?6) + 933( ln4—2lne+2+2sin20)],
ory or,
(4.140)
87(ug )y ~ P 2g25( —sin 6 — 2 5in 6 cos? 0) + 2¢,,(sin  — 2 sin 6 cos? 0)
+ 2945008 0(1 — 2 cos? 0) + 2g44 cos (1 — 2sin?6)]
9912 Jro(ry — By)
e 23
L rite Irl R |3
+ [36912( In4—2ne+2+2cos?6)+ 669“51n000s Ol (4.14b)
(51 73

87(uy )y ~ p1[2g25(cos O — 28in? § cos 0) + 2¢5,( — cos O — 2sin2 0 cos &)
+ 295,810 8(1 — 2 cos? 0) + 2¢4,5in H(1 —28in2 )]

6913] {f’ f }913 r,—R,)
+In [2-— + dR,
P ory |7y — R,

+[85113( In4—2Ine+2+2sin20)+ 2;‘112&1100056} (4.14¢)
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Thus, as p -> 0, the components (u3),,, (uf)g, (43 ), of this velocity field have the
asymptotic form

87(wy), ~ P — 4, 5in 6 cos 6 — 4g, sin 0 c08 6 + 2g,,(1 — 2 cos? 0)

+2¢45(1 —2sin26)]+1np [ 9912 “oosh 42 56913 sin (9]
1

U’ J’ } 912cosx¢9+glasm0)dR1
-1 rite IT1 1I3

+[( N12005 6 + glasm@)(—ln4—2lne+2) 29912 0504 2 g13s1n0)]
ory or, or, ory

(4.15a)

0 0
87(ud)y ~ P 2g03 — 2030] +1np [ 2 8g12s nf+2 6913 cos 0]
1

— 1280 0 + g,5 cos 0)
dR
:f .[T1+e} |7'1 R | !

+[(—%s 9+8a cosﬁ)( —In4-— 21ne+2)] (4.15b)

71

8mr(ud), ~ p[ —4g,3c08 0 —4g,sin ] +1Inp [ %2 +2 6933]

ory ory

TE Joo +953) (11—~ Ry)
[

+19 8%3 8g”)sm00050+3922( In4—2lne+2+2cos?6)
8 1 8 1 arl

+agg—r33(—1n4—21ne+2+2sin20)]. (4.15¢)
1

Since u¥ must satisfy the boundary conditions (4.2) it follows that g,,, 13, o3,
s> G20 a1 g5, must be chosen such that

J23+032 = BA%. 87,
J2o— a3 = AA2.8m,

02— 32 = — $CA?. 87, (4.16)
= 1DA2, 87,
13 = tHA®. 87,

Now the terms

ﬁ: Bio (%‘Ri)’z} _6_: O:3 +(ri_Ri)r3}
922672 | Rl |r—R? 933373 |r—R| " |r—RI?

may be written in the form

() el ]
o) anlem s )




Long slender bodies in a viscous fluid. Part 2 637

where it is to be observed that the coefficient of }(gys+ ¢g33) is of the same form
as that of g,; in the integrand of (4.6). Since it has already been assumed that
g11 = 0, one may here take Gas+ag = 0. (4.17)
Hence (4.26) and (4.27) give the values of the quantities g,,, g13, .., J33 88 being
G1o = 20DA%, g3 = 27EA%, g,y = 20(2B —C) A2, }

4.18
Jas = 2m(2B+ C) A2, g,, = 4mAA%, ¢g5 = —4WAA2, ( )

Substituting these values into the asymptotic expansion (4.15) for uf one obtains
that asp - 0

(u3), ~ p~(— 2422 cos 26 — 2BA%sin 20) + In p(A dA[dr,) (D cos 0 + K sin 6)
+ (AdA[dr,) {(Dcos 0+ B sin0)(—In2—Ine+2)}
1) X%(r,— R)
Dcos O+ Esin 6 U J }——1 L
+3}(D cos sin _ i T=By°
(ux)g ~ p~Y—CA2)+1Inp(AdA/dr,) (— Dsin 0+ E cosf)
+(AdA[dr) {(—Dsin0+Ecosf)(—In2—Ine+1)}
A%r,— R
%( DSln 0+E0050){f frl+e} _I/"TIR—l:!;)dR (419b)

(u3), ~ p~Y(— DA% cos 0 — EA2sin 0) + (A dA[dry) (2B sin 20+ 24 cos 26). (4.19¢)

dR,, (4.19a)

In order to obtain the velocity field u,, one has to add to u¥ the velocity field u,
(see equation (4.4)), where ug has the property (4.5). Thus u; may be taken to be
the flow field produced by a line of forces f;(R,) acting along the r; axis from
r, = — 1 to r; = + 1. Therefore this velocity field is given by

0y (ri—Ry)(r;—R)
ug); = Sﬂf Fi(By {]r R o LY (4.20)
The asymptotic form of uy near the r, axis (|r,| < 1) is now found in a manner

similar to that for uf by dividing the range of integration into the intervals
~1< R €<r—-¢r—e< R <rj+eandr +e < R, <+ 1. Thus writing

1= [ | 2+ R o

S I I = R B A

it may be shown that the contribution from f;(R,) as p — 0 is given by
I, ~ 4f (R))0;;(In2+1Ine—1Inp—3), }

'N”ﬂ”r’—s e St

(4.22)
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the contributions from f,(R,) and f,(R,) to the asymptotic expansion of ug for
p — 0 being similarly obtained. The addition of these contributions then gives
8m(us) ~ 2(fyco80+f3sing)(In2+Ine—Inp+1)
r1—€ +1 3
+U’ +J’ }(f2cos6+f3smt9)dR1’ (4.230)
-1

rite ‘7'1 - Rll

8m(up), ~ 2(—fasinf+fzcos6)(In2+Ine—Inp)

+{f“ ‘ f+} fzs’lljiﬁ;{‘l‘cosg)dzz (4.23b)

Ty —€ +
87T(u;)z~4f1(1n2+1ne-—lnp—%)+2{f . +f +}|7'1—{f1R1ldR1 as p—>0.
- nve (4.23c)

The asymptotic form of u, as p - 0 is obtained by adding the equations (4.19)
and (4.23). Thus

(ug), ~ p~(—24A%cos 20 — 2BA*sin 26)+1Inp {(D/\%i—— 2 %) cos
1

A, fs (0% 2 £2)conts (1 Zm0 L) i
(E,\,,l 2877) (9} {D/\dl 28 cos 0+ E/\dl 257;)sm0

X (—1n2—1n6—1)+3(/\;m) (D cos 6+ Esin0)+ (4 D cos 0+ E'sin0)

2 +1
] P [ttt
rte Irl ll rte 877]7.1 R I (4:24:0/)

(ug)g ~ p~H(—CA%) +1np { (D/\;ml— 2 g;) in 6+ (E/‘td/1 f;) cos 6}

1

{ (D/\d—/\—2f2) 0+(E/\g&1—2g;)cosﬁ}(——ln2—lne)

+( d/\)( —Dsinf+ Ecos6)+1(—Dsinf+ Ecosb)

- 1\ A%r, — R,) 1) (—f2sin 0+ f;cos 0)
{f fﬁe} [ —R[* dR1+{f fr1+€} 8rr|r,— B, i
(4.24b)

(uy), ~ p~H(—DA2cos 0 — EA*sin ) — fl 1np+4 (1n2+lne—~)

+(AZ¢1) (2B3in -+ 24 005 20) + { f f +} W {lRll dR,. (4.240)

The value of f;(R;) and hence of u, may be a function of « so long as the term

K2, in (4.1) is 1arger than the next term (of order «?) in this expansion. It may
be shown that one must take f;(R,) to be of the form

FilRy) = (foli + COE . (4.25)

Ink ln (Inx)?
s0 that u, possesses an expansion

u
uz_u2+u20+ L 2oy, (4.26)

ln K (Ink)?
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where u,, U,, and u,, are given by (4.20) with f;(R,) replaced by (fy);, (f1); and
(f,); respectively. Therefore the outer expansion (4. 1) takes the form

2 2
e 2t ez
Substituting the expansion (4.25) into (4.24), one obtains the asymptotic forms
of Uy, Uy, ... as p - 0. By noting that the outer expansion can possess no term

like (x%1n p) [since this would imply a term of order (x2In ) in the inner expansion],
it follows from (4.24), (4.25) and (4.26) that (f;); is given by

(fo)r =0, (fo)e = 4mDAdA[dr,, (fy)3 = 4mEAdA[dr,. (4.28)

We now examine the integral

e (20

appearing in (4.24). Integrating this by parts, one obtains

e O~

Now, since A(-D=A(+1)=0
and A¥(ry—e€) = A%(ry) — 2AdA/dr,,
A¥(ry+€) = A%(ry) + 2AdA/dry,
it follows that the above expression (4.30) for K may be simplified to give
+1
K_—4)\—-2U f }Ad/\/drldR (4.31)
dry rove) [ri— R
By substituting the expansion (4.25) into (4.24) and by makmg use of the results
(4.28) and (4.31), one may obtain the asymptotic form of u¥ +u,, for p > 0 as
(u3) )+ (tgg), ~ P~ — 2422 cos 26 — 2BA%sin 260) + 2(A dA[dr,) (D cos 6 + Esin 6),
(ug)g + (g ~ p71(— CAY),
(u3),+ (Uge), ~ p~(— DA% cos 6 — EA2sin 0) + (AdA/dr,) (2B sin 26 + 24 cos 26).
(4.32)

u = U+k2(uf +u,)+ Uyt ... (4.27)

For the inner expansion, the velocity field @ is given by

0 = «0, + K205 +03) + O(«3), (4.33)
where («@i, +x%0y), when expressed in outer variables, is of the form (3.24).
The terms of order % in (3.24) have already been matched and it is seen that in

order that terms of order «% be matched one has to choose a velocity field @i, in
the inner expansion such that when expressed in outer variables

(us), ~ (AdA/dry) (D cos 0+ E sin 8), }

(ug)g ~ (AdA[dry) (— Dsin 0+ E cos ), (4.34)
(@), ~0, as p—>0.
Thus, relative to the Cartesian axes,
(W)~ 0, (U)y > (/\d/\/dﬁ)D,} (4.35)
(Ug)g ~> (AdA/dr))E as p >0, )
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which represents a uniform flow. Also i, satisfies the creeping motion equations
and the no-slip boundary condition (3.19) on g = A(r,). Hence one may find the
flow field @, by following the analysis given by Cox (1970). Thus we take
(us), = H{1 —A%~2—2In (p/A)} cos 0+ K{1 —A%p~—2—2In (p }smﬁ
(ua)y = H{1—A%p"24+2In(p/A)}sin 0+ K{— 1+ A%p~2—2In(p/A)}cos O, ; (4.36)
( 2)z = 0;

where II and K may be functions of « so long as they are much larger than «
in the limit of k — 0. We shall take

po By B
Ink * (Ink)?
(4.37)
K, 'K2+““

T Ink " (Ink)?

The substitution of (4.37) into (4.36) and the changing to outer variables yields

(u5), = (2H, cos 6+ 2K sin ) + {(2H +H,—2H,In(p/A)) cos 0
+(2K,+K,~2K,In(p / sm6}+...,

(@) = (— 2H,sin 0+ 2K, cos a)+ﬁ{(_ OH,+ H,+2H,In (p/A))sing { (438
+(2K,— K, ~2K,In (p/A))cos O} + ...,
(43), = 0.
Hence by the condition (4.34), it is seen that H, and K, are given by
H, = {A(dA[dr)) D, K, = lA(dA/dr)E. (4.39)

In the outer expansion, the substitution of (4.25) and (4.26) into (4.24) and the
equating terms of order (Inx)-! give the asymptotic form of u,, for p — 0 as
being

87(Uy), ~ Inp{—2(f)sc08 0 — 2(f;)s sin0}+{—2(f1)2cosﬁ—2(f1)3sint9}
X(~In2—Ine—1) { f f }fl)zc"w* Ussind y  (4.400)
r+e

|ri— R,
871(tgy )y ~ In p{ + 2(f1)a 510 0 — 2(f})3 08 O} + { + 2(f,), 5in 6 — 2(f,)3 cos 6}
><(~2ln2—ln€)+{f f }_(fl)zsin0+(fl)3cosade, (4.400)
1 t+e

71— By

877(“21)2"’“4(f1)1lnp+4(f1)1(ln2+ln€—%)+2{ 11‘5+f:;} (‘il)lli’llde'

(4.40¢)
The matching of terms involving In p in (4.38) and (4.40) gives

(fr=0, (fi)e=87H,, (f));= 87K,
so that by (4.39)

(fo)e = 47A(dA)dr,) D,  (fy)s = 4mA(dA)dr,) B. (4.41)
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Also the matching of terms of order p° in (4.38) and (4.40) gives the values of
H,and K, as

H,= HZ-InA)+ fl 2(In 2 +1Ine) +—{f }
rite

|71

K,=K,(}-InA)+ f1)3 (In2+Ine) +———U- J-hﬂ} fl)s d ”

lr,— R

The substitution into these expressions (4.42) of the values of H;, K, (f;)sand (f;)4
from (4.39) and (4.41) yields

(4.42)

H, = %/\(d/\/drl)D[%-ln/\+1n2+1n6]+%D{ f f } [rd/\/iZR| ix,
1+ € -
r—e ;/\/d].; (4.43)
K2=%/\(d/\/d7'1)E[ —InA+mm2+Inel+ E{J- f } 8 dR,.
rte |”'1—R1|

Continuing the matching process by substituting (4.25) and (4.26) into (4.24)
and equating terms of order (In«x)-2 give the asymptotic form of u,, for p - 0.
Then, by matching the term of order (In p) with that appearing in the coefficient
of (Ink)~2in (4.39), one obtains the values of (f,); as

(fohr =0, (fo)o=38mH,, (fy)s=87K,,

80 that
r—e +1
(fa)e/87 = $A(dAJdry) DI ~In A+ In 2 +1Ine] + 1D U f } Al(rd/\/ ) iR,
1+€e 1
(4 44a)
(fo)a/87 = lz‘A(d’\/drl)E[%~ln/\+ln2+lne]+%E’{f f } lrd’\/dR dR,.
1+ € 1
(4.440)

5. Force on body

The results given in §§3 and 4 for the velocity field are now collected. The
equations (3.4), (3.15), (3.18), (3.21), (4.36), (4.37), (4.39) and (4.43) give the
inner velocity field @ as being

] =
Uso

+ (Ink)?

ﬁ:xu1+/<2{u2+ +...}+..., (5.1)

Ink
where @,, Gf, i}, and @i}, are given by
(%), = A(P—2A%71+ A%~2) cos 20 + B(p — 2225+ A%—3) sin 20,
(U)g = A(—p +A%p~3)sin 20+ B(p — A%~3) cos 20 + C(p — A2p™1), (5.2)
(), = D(—p -+ Ap~1) 00 0.+ B(p— \2p~1) sin 6;
(u3), = 4A(dA[dry) (—p~1+ A2p~3) Z(4 cos 20 + Bsin 20)
+A(dA[dry) (1 — A2p~2) (D cos 0+ K sin 0),
(u¥)y = 4A3(dA/dr,) p—3%(A sin 20 — B cos 20)
—20A(dA[dry) p~Z2+ A(dAdr,) (1 — A2p~2) (D sinf — E cos 6), (

(u5), = 2A(dA[dr,) (1 — A%5~2) (4 cos 20 + Bsin 20)
—2A(dA[dr,) p%(D cos 0+ Esind);

41 FLM 45

5.3)
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(i), = $MdA[dry) {1 ~A25~2~21In (p/A)} D cos 0
+ (A fdr) {1 = A%p2 -2 ln p//\ )} Esin,
(wh)g = SA(dA[dry) {1 —A%p~2+21n (p/A) }D sin (6.4)
+3A(dA[dry) {—1+A%p~2—21n (p/A)} E cos 0,

(Us1), = O;
(39), = Hy{1 —A%~2—21In (p/A)} cos 6 + Kp{1 —A%~2—2In (p/A)} sin 6,
(@ho)g = Hy{l —A2p~2421n (p/A)} sin O + Kof — 1+ AZp~2 21n(,5//\)}cos,0,} (5.5)
(%gs); = 0;

where H, and K, are constants given by

H, = JA(dAJdry) D& —InA+1n 2+ Ine)+ DU"—S f }%ﬁzﬂ@m,
rte 1 1

K, = Y\(dA/dry) E{l—ln/\+ln2+lne}+IE{fﬁ—e f }/}rd’\/‘_iRR,l dR,. (5.6)
rte 1~

Also, from (2.7), (4.27), (4.6), (4.18), (4.20), (4¢.28), (4.41) and (4.44), it is seen that
the velocity field u in the outer expansion may be written as

_ 9§k Uy | Uy
u=U+x {(uz+u20)+lnk+(an)2+...}, (5.7

where U is the undisturbed flow field

U, = Ap cos 20+ Bpsin 26,
Uy= —Apsin26+chos20+Op,} (5.8)
U, = Dpcos 0+ Epsind,
and where uf is the flow
1 [+ 4 0y (r;—R,)(r;—R))
kY o . s i3 3 (AN ] J
(uZ )’L 87Tf__lgjk(R1) a,rk I:l,r__R| + ‘T—RP ] d‘Rl (59)
produced by a line of force doublets of magnitude g;,.(R;) given by the matrix
0 D E
g(Ry) =2m22l0 24  (2B-0)]. (5.10)

0 (2B+0) —24

The remaining flow field x%{u,,+ (Uy /In k) + (W,,/(In £)2)} in the equation (5.7) is
given by

()i | (Way); _ 1 (fl (fz)j
{(’“2“”'* In« +<Tri73)} é%f {(f" Ik * (1n,<)z}
8&] (Ti_Ri)(r
{\T_Rﬁ Py IE

)] dR,, (5.11)

which is a flow produced by a line of force of magnitude

{(fo);+ ()il k+(f3);/(Ink)?,



Long slender bodies in a viscous fluid. Part 2 643
where (fy);, (f1); and (f,); are given by

£, =1, = am 2 D , (5.12)
dry g
0
f, = 87 HZ), (5.13)
K,

the quantities H, and K, being given by (5.6). Hence from the outer expansion
it is seen that the forces acting on the body are equivalent to a force & and a
couple & per unit length acting on it, where

0
dA 1 H,
13 iy 2
F = 8nx? 2A(Z?‘:ll)(l—i_lnl<f) (Ink)2 |,
dA 1 K
1= 2
2/1dr1E(1 +lnl<) (In k)2
932—G2a 20
G =k ¢ =272 E . (5.14)
—J12 -D

The total force F and torque G acting on the body about the origin are given
by
+1 +1
F = Fdr,, G =f (B +rx F)dry, (5.15)
-1 -1

where r is the position vector of a general point on the body centre-line and is
therefore of the form (r,, 0,0). Since A = 0 at r = + 1 it may readily be shown that

+1 d/l

= 5.16

f A, dr; =0 ( )
+1 _dx 1[+1

and f rAS—dr, = ——f A%dr,. (6.17)
dry 2) 4

Thus, substituting the expressions (5.14) into (5.15) and by making use of (5.16)
and (5.17), one obtains for the total force F and torque G acting on the body

B &
o <F) G- (G) 519)
F; Gy

where F,=0, F,/8m=
(5.19)
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+1
and G/87 = %Ksz A%dry,
Go/8m = —Zl KEf_l 2dr, + )2f_ ri Kydry, (5.20)
1 K2
Gs[8m = D /\ dr,— K)2 _1"1H2d7'1-

1t should be noted that the terms of order 2 in the expressions for G, and G
are identically zero. If one substitutes the values of I, and K, from (5.6) into
the formulae (5.19) and (5.20) and notes that in addition to (5.16) and (5.17) one

has

f /\ln/\ drl—O

da 1 +1
f rAlnA —dr, = ——f /\21n/\dr1+~f A%dry, (5.21)
-1 d 71 2 —1 4 -1

then the above values of components of F and G may be written as

i 11 s M e Y L

K2 +1 n—e A(dAJdR,) AR,
e I 1 M e e
and

+1
G, /87 = %K2O’f A%dr,

(5.22)

+1 1
G,/8m = ——1Ef Adr,— )21}E{ 1+1n2+1nef /\2dr1——Jur /\zln/\drl}
1 ~1
K2 +1 1A d/\/dR dR
BERAT |
et [{f L
+1 +1
Gy /8m = +——1Df A2dri+ 2%D{(1+1n2+lnef 1/\2drl—f /\2ln/\dr1}
ST s J‘ J‘“ /\d/\/dR dR,
_(an)z 4Df—1 [{ * r1+e} Irl ] rudrs.
(5.23)

6. Wall effects

The theory given in §§3, 4 and 5 for the hydrodynamic force and torque
exerted on a long slender body S is valid for an undisturbed fluid flow of the
form (2.7), there being no solid boundaries present. We now consider the pos-
sibility of a solid wall W being present at a distance from the body of order a. Tt is
assumed that upon W the fluid has a given velocity Uy,. Thus one might for
example consider (i) a body S placed in a shear flow bounded by a plane solid
wall W, for which the undisturbed flow U (relative to axes fixed in the body) is

given by (see figure 3) U. = D&..r
T 173

which possesses the value (Ug); = —Dé, k
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on the wall W at r, = —k; (ii) a body 8 rotating about its r, axis in a fluid at
rest bounded by a plane wall W at r, = — £ (see figure 4). By adding a rotational
flow to the system about the r, axis it may be shown that this problem is equiva-
lent to one for which

s

=0, Uy=-Cr;, U;=+0Cry,

Sail
s 3

AUV RNV VNN

Ficure 3. Body in shear flow in the neighbourhood of a plane solid wall.
P 1
- )
2
A NP4
2
]
Z
-~
A 3
-~
2
2
/ w
A I
,j ]

Ficure 4. Body rotating about its symmetry axis in the neighbourhood
of a plane solid wall.

with a value of (Up); = +Cry8,5+Cké,yy

on the wall W at r; = —k.

Since the wall is at a distance of order a from the body it is situated entirely
within the outer region of expansion. Hence the analysis of the inner expansion
given in § 3 remains unaltered. The asymptotic form of u, in the outer expansion
is therefore still given by (4.2). However, in dividing this velocity field into flow
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fields (uF, p¥) and (uy, py), it is seen that (u¥, p¥) is now given by (cf. equation
(4.6))

+1
(u‘Z*)z = _gl']—rf-—-lgjk( aR [f’b] r R ]d‘er
1 [+ (6.1)
Py = “snl g]k( ) [g](r R)]dR,,

and represents the flow field produced by a line of force doublets in the presence
of the walls W. The quantities f,;(r, R) and g;(r, R) in the above expressions are
the velocity and pressure Green’s function for creeping motion flowin the presence
of the walls W i.e. fi(r,f) and g,(r, ) are defined by the equations

fij,kk_gj ’L+8 6( "“0 f‘LJ’L_O (62)
with the boundary condition
f’l:j = 0 on W, (6.3)

0(r — ) being the Dirac delta function.
The expression. for the velocity field in (6.1) may be written as

(u::)i=f+lgjk(R1)i[ Oy (= Ry (Tj—R,-)] dR,

Bar= c’)rk F—R|T  |r—RP
I5(£1) 8y (ri—Ry) (r;— R;)
f_1 VST oE, [w )"IF=R]” |r=R[ ]de’ (6:4)

where the integrand of the second integral possesses no singularity at R = r.
Now, ag p = 0, the first integral in (6.4) possesses the asymptotic expansion (4.15).
Hence the expression (6.4) for uy has the asymptotic expansion (cf. equation
(4.15))

8m(u3), ~ p~' [ —4gz38in 0 cos 6 — 4gg, sin 6 cos 6 + 2g,,(1 — 2 cos?6)

+ 2g5g(1 — 28i026)] +In p [ 12000+ 2 %085 )
(51
nTe (ry—R,) (9150080 +g,48in 6) dR
{f fr1+e} Irl R |3 1
+[(3g12 s 0+ gl3s1n0)(—1n4—-2lne+2)
ory or,
+< 5712 cos 0+ 2 agrwsm0) +8a(VEcosO+ V¥ sm0)} (6.5a)
1 1
* 1 _ 9912 9913
87(uz g ~ P 2005 — 2¢ss] +1np | —2 722 or, sinf+ 22 o cosd
1
{fr'—e f : (ri—Ry) (= 9123111034‘913 cos 6) dR,
e 11— B,

+[< 8912 in 6+ gl3cost9)(—1n4—2lne+2)
67‘1 ory

+8m(—V¥sin b+ ngcos@)], (6.5b)
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8m(u¥), ~ p~I[ — 4g,,co8 0 — 4g,4sin F]+1In p [ 922+ 23933]

or,
{f f } (922 +933) 2 - Rl)de
-1 4+ |7'1 1‘

+[2(6g23 a‘(732)s1nt9cos¢9-{- 522 ~In4—2Ine+ 2+ 2cos?6)

or, oy ,-1
aag%( ]n4‘2ln€+2+25i1129)+8"V’1“}, (6.5¢)
71
where V* is a vector which is a function of », only and is given by
1[N 0 0;; (r;—R;) (r;—
* . . U ij 1 i
V‘L' - Sﬂf_lg]k(-Rl) aRk [lr—Rl + Ir Rl3 fw T, R ]d.Rl, (66)

where r is the vector (r,, 0, 0). Hence, following the analysis of § 4, it is seen that
g, is unaltered and is still given by (4. 18) The flow field uj is taken to be the
flow field produced by a line of forces f;(R,) acting at the r; axis in the presence

of the wall W. Thus
- o | 5@ Syt R AR, (6.7)
—1

where f;;(r, R) is the Green’s function defined above. Thus we write

’ 1 0y (ri— Ry) (r;—R))
(uz)i g} f] []T R|+ | _Rla }d.R

2 8y (ri—RBy) (r;— Ry)
*am ) B[ Bt R~ 2 =R ar,, o
the integrand of the second integral possessing no singularity for r lying on the

ry axis. It may be shown that the asymptotic expansion of u; as p - 0 is (cf.
equation (4.23))

87(us), ~ 2(fpc080+f38m6) (In2+Ine—Inp +1) \
T € +1
{f J‘ }f2 cos 0+ Sln0(11{‘,1+ 8m(W§ cos 0+ Wi sin6),
1+-€ |r1 R |
87(ug)y ~ 2(—fosinf+fycos ) (In2+Ine—Inp) (6.9)
{f f } —f281n6+f3cosade+87r(—W;‘sin0+ W¥ cos 6),
n+e |7y~ By
8m(ul), ~ 4f,(In2+Ine—Inp—3) +2U"_e f } dR, + 87 W,
retel |71 — By
where W* is given by
N _ 0y  (r—R)(—Ry)
Wi 877 f] fij(r’R) |I'—R| II' R[3 d'Rl’ (6.10)

where r is the vector (r,0,0). We again expand f(E,) in the form (4.25) and
define Wg, W¥, WX, ... to be the vector W* given by (6.10) with f(R,) replaced
respectively by £y(R,), £;(R,), f5(£y), .... Thus W* may be expressed as

W§ Wi

W Wo+an+(—lﬂ—)§+.... (6.11)
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As in § 4, the value of f; must be given by
(for =0, (fo)e = 4mDAdA[dr,, (fy); = 4mEAdA/dr,. (6.12)

However the flow field u¥ +u,, has now the asymptotic expansion near p = 0
of (cf. equation (4.32))
(u3),+ (Ugg), ~ p7H — 2422 cos 20 — 2BA2sin 20) 4 (2AdA[dry) (D cos 0+ E sin 0)
+(VE+W§)cosO+(Va+ W3)sinb,
(u)g+ (uag)g ~ p7H(— CA%) = (VE + W)sin 6+ (V5 + W) cos 6,
(), + (%gp), ~ p~Y— DA2cos § — EA%sin 0)
+(AdA/dr,) (2Bsin 20+ 24 cos 20) + (V¥ + W¥).
(6.13)
Hence it may be shown that the inner flow field @, is such that when expressed
in outer variables (cf. equation (4.34))
(#3), ~ (AdA[dr,) (D cos 0+ Esin0)+ (Vi + W) cos 0
+(Vi+ W¥)sing,
()9 ~ (AdA[dry) (—=Dsinf+ E cosO)— (VE+ W§)sinf (6.14)
+(Vi+ W$)cos0,
(ﬁé)z ~ (Vik + Wik)
Thus, taking
(ws), = H{1—-A%~2—21In(p/A)} cos 0
+K{l——/\2 —2—-2In(p/A)}sind,
(w3)p = H{1—2A%p~2+2In (p/A)}sin (6.15)
+K{—1+2A%5"2-2In(p/A)} cos b,

(ﬁ;)z = Lln (/_)//1)7
where H, K and L are of the form

H, H,
+——(an)2+...,

K, K,
K= et iy

L, L,
L= l_n—E+(an) R

" Ink

+... (6.16)

it may be shown that @1; expressed relative to outer variables is

(uy), = (2H; cos 0+ 2K sin 0) + (1/In«) {(2H, + H, — 2H, In (p/A)) cos &
+ (2K, + K, —2K,In(p/A))sin O} + ...

(u3)g = (—2H,sin 6+ 2K, cos 0)+ (1/In k) {(— 2H, (6.17)
+ H,+2H,In (p/A))sinf + (2K, — K, — 2K, In (p[A)) cos 0} +...,

(W), = = L1+ (1/Ink) (= Ly+ Ly In (p[A)) +
Hence by (6.14), it is seen that the values of H,, K, and L, are
Hy = }{(AdAjdry) D+ VE+ (W)},
K, = }{(AdA[dr)) E+ V3 + (W:)a}: (6.18)
L=~ Vi"—(WS‘)l,
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where it has been noted that W* is given by the expression (6.11). The asymptotic
form of u,, for p -> 0 is now given by (cf. equation (4.40))
87(tgy), ~ In p{ — 2(fy), c0s O — 2(fy)g 8in 6} + { — 2(fy), cos O — 2(f; ) sin 6}

‘(—In2—Tne—1) {J‘n——e J‘ }(f1)20050+(f1)35m0dR1
el Irl _'RIJ

+ 87{(WT)ycos 0+ (W), sin 6}, (6.19a)
87 (U )g ~ In p{2(f1), 8N G — 2( ;)5 cos G} +{2(f,)s sin 6 — 2(f)g cos 0} (- 2In 2 —In¢)

A% f B e =

+ 87{ — (W), sin O + (W), cos 6}, (6.19b)
87(Uyy), ~ — 4(fi)In p+ 4( f1 ln2+lne—%)
+2UT‘_e f } dR, +8m(W* 6.19
e R N (W) (6.19¢)
The matching of the terms involving In p gives
(fr=—1Ly.87, (fi)e = H,.87, (fy); = K,.87. (6.20)

Continuing the matching process the values of H,, K, and L, may be obtained as

H,=H((}—InA+In2+Ine)+ 3H{(W§),+ “‘rl*e f } = e
167T nte

|71~ B,
(f1
= K.(1—
K,=K/(}—InA+In2+Ine)+ H(W{); Iﬁﬂ{f fnﬂ} !71 ,1(6.21)
Ly = L(~3~InA+In2+Ine)— (WF), ”# f } R,
r+te

and the value of f, as

(foh = —2mLy, (fy)y = 87H,,  (fy)s = 87K, (6.22)

Thus it is seen that the velocity field in the outer expansion is given by (5.7),
where U is the undisturbed flow (5.8) and where uf is the flow

. 1 [+1
() =~ g5 | omlo) - Ut RO, (6.23

produced by a line of force doublets in the presence of W, where g;.(R,) is the
matrix

0 0 E

gu(R) =27220 24  (2B- O)) . (6.24)
0 (2B+0) —24

The remaining flow field «2{u,, + (u,,/In k) + (u,./(In «)?)} in (5.7) is given by

{(u20)2-+(“21)‘5+((1’f12f())"} L f {(f(, )+ iy U }[fer 1dR,, (6.25)

Ink 8 Ink  (Ink)

which is a flow produced by a line of force. The quantities (f);, (f;); and (fs); are

given by 0 —1L, _1iL,
Jo= 477/1d , fi=8m{ H, |}, fo=8r{ H; 1}, (6.26)
"1 E’ K, K,
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where L,, H,, K,, L,, H, and K, are given by
L=~ VE- (W8,
Hy = H{(AdA/dr))D+ V§+(Wg)s}, (6.27)
K, = HAdAdr) B+ VE+(Wos}
Ly={V¥+ (W&} (3 +InA—In2—Ine)— (WF),

S LR
rte lrl v

H, = {(/\d/\/drl)D+ VE+(WE Jo}( —111A+1n2—{-lne)+%(W;")2
{J' J' } Adk jdry) D+ V¥t :)2}dR1, (6.28)
rte |7'1 1[
K, = H{(AdA[dry) E + Vi (WE) )a} (g—ln/\+ln2+lne) -%—(W}‘)3
] e,

|71—Rll

riteé

the values of the vectors V¥, Wg and W7 being given by

w_ 1 0| by (r;—By) (r;—
Vi= '8"“_[ 9;1(By) BRIC[II‘~JR‘ + [r— R|3 fu (r;R) ]d
1 O,: —R.
(We): = e fo [f,-]-(r,R)—lr:’R'—(r’ ]rl)(lgla )] dR,, (6.29)
7k 1 3;‘ (rg—Ry) (r;— j)
(wh), = g;f (s | ol R = 20 = TG | a,

the vector r being put equal to (1,0, 0) in each of these integrals.
The forces acting on the body are therefore equivalent to a force # and a couple
% per unit length acting on it, where

VL 1 Ly
teta (In k)2

i K, K,

20
Q8 = ;L-KW( E ) (6.30)
-D

The total force F and torque G acting on the body about the origin are given by

+1 +1
=f Fdr;,, G =f (G+1x F)dry. (6.31)
-1 -1
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These equations give, for the force F,

1 k2 [+1 1 &2 +1
F1/87T = Z mf_llerl-i-Z —(ln K)2 _1L2d7'2,
K2 +1H 2 K2 +1H P
F2/87T="ln—Kf_l 1 71—(1—11,;)3]_1 207, (6.32)

/s K2 +1K 4 K2 +1K p
sl 7T=“i‘n_Kf_l 1 Tl'—m e T
and, for the torque G,
+1
G/8m = %KzOf A%dry,
-1

+1 PR
f 71K1d71+—f r Kydry, (6.33)
-1

2
Go[8m = ++— k),

Ink

k2 [+1 K2 +1
G3/87T = — o lrlﬂldrl_m _17’1H2d7‘1:

where L,, H,, K,, L,, H, and K, are given above by (6.27) and (6.28).
When there is no wall present, then V¥ = W§¥ = WY = 0 and (6.32) and (6.33)
reduce to the results given at the end of §5.

7. Resistance to axial rotation

In this and the next two sections, the results given in §5 for the force and
torque on a long slender body will be used to examine special cases.

Consider first a long slender body which is rotating with a dimensionless
angular velocity of unity about the r, axis. The fluid in which such a body is
immersed is assumed to be unbounded and at rest at infinity. The disturbance
produced by the body and the forces acting on the body are the same as would be
. produced by taking the body at rest in a fluid undergoing a motion U(r) given by

U=0 U=-p, U=0 (7.1)
Thus in (2.7) one has
A=B=D=E=0, C=-—1. (7.2)

Hence by equations (5.18), (5.22) and (5.23), it is seen that the force F and torque
G acting on the body are given by

Gy
F=0 and G=|0], (7.3)
0
+1
where Gl=—4m<2f A%dr,. (7.4)
-1

Thus in d¢émensional variables it is seen that the couple acting on a body rotating
with angular velocity o is

+1
G, = —47T,uabzwf A2dry
-1

= —4uwV, (7.5)
where V is the volume of the body and x the viscosity of the fluid.



652 R. G. Cox

Although the results given in §5 were derived for bodies with ‘sharp ends’
for which A(r,) is a continuous function satisfying A(—1) = A(+1) = 0, it may
be seen that the present result (7.5) for rotational resistance is valid for blunt-
ended bodies (such as a circular cylinder of finite length) since the effect of the
ends is to alter the value of the couple by an amount of order (1b%vw) which is
much smaller than that given by (7.5) for the total couple. Thus one may expect
this equation (7.5) to be valid for bodies for which A(r,) is piecewise continuous
with a finite number of discontinuities.

8. Force and torque on body in shear
Consider an undisturbed shear flow U(r) given by
U,=U;=0, U,=psind, (8.1)
which is the flow field (2.7) with
A=B=C=D=0, E=1. (8.2)

In this flow a long slender body is considered held at rest with its axis in the 7,
direction. The hydrodynamic force F and torque G acting on the body are now
calculated using equations (5.22) and (5.23) for the cases in which the shape of
the body is (i) a double cone and (ii) an ellipsoid of revolution.

(i) 4 double cone

If the body shape is a double cone (see figure 5(a)) given by
A(r) =1+ (ryf/a) for —a<r <0,
=1-7 for 0<7r <1, (8.3)
then it may readily be shown that if —a <7, <0

U‘n—e J‘ } (AdA/dE,)dR, - 9411 +a-tr)Ine
e |7'1 l

+(1+ot+a2r —r)in(—7r)
t+at(l+alr)In(r+a)+ (1 —In(l—r)

+(1—a1—20"2r), (8.4a)
and if 0 <

r,-—e +1

+e 171
+a Yl +alr)In(r;+a)+(r,—1)In(1—7,)
+(1—a1—2r,). (8.4b)
Substituting these values into (5.22) and making use of (8.2), one obtains the value
of the force F on the body as F =F=o0,
Fof8m = —[«?(In k)] H3(1 + )?Ino+ (a2 —1) (1 + a)2In (1 +a) + (e —a 1)}
(8.5)

Similarly, the value of the torque G on the body about the origin is obtained by
substituting the values (8.4) into (5.23) and by making use of (8.2) and (8.3).
Thus G, =G, =0,
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Go/8m = — k¥ In k). (1 + o) — [k%/(In &)%) . 5[ (2a% + Ba® + ) In
+(—203— 32 +a+1-3a1—20 %) In(l+a)+2In2(1 +a)

+(2a2+a+1+2a-1)]. (8.6)
Thus, if the magnitude of the shear is y, the dimensional force and torque may be

written as F,=F=0

Fy= —[pub%y/(Ina/b)?]m{(1 +a)?Ina+(a~2—-1)(1+a)ln (1 +a)+ (@ —a1)},
(8.7)
and G, =Gy =0, G,=§muaby(1+a)/[ln(a/b)+C], (8.8)
1
1 uly
a
3
aa
b
(@ ®)

F1GUuRE 5. (a) Double cone in shear flow. (b) Ellipsoid of revolution in shear flow.

where C is a constant given by
C=H2+a)ma+(—20*—a+2—a"1—202)In(l +a)
+2In 24 (2a—1+42071)}.  (8.9)
(iiy An ellipsoid
Consider a body of ellipsoidal shape (figure 5(b)) given by
Ar)=+(1—-)F (=1<r, <+1). (8.10)
By direct substitution it may then be shown that
{frl_e f } Ad/\/de) dk, =2rIne+2r, ~r,In(1—73%) (8.11)
rate |7'1 R,
for — 1 < r, < + 1. The substitution of this expression into (5.22) gives the total
force F on the body as F=0 (8.12)
whilst substitution into (5.23) gives the total torque G about the origin as
G,=G;=0,
Go/87 = —3{k?In k]~ (—§ +§In 2) [«*/(In k)], (8.13)
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The dimensional force and torque on the body may therefore be written in the

form F=0 (8.14)
and GL=0G3 =0,

G, = Smpab?y/[(Inafb)+ (In2—-1)]. (8.15)

It should be noted that, for the body whose shape is a double cone, there is

in general a total force acting on it across the flow in the r; direction (see equation

(8.7)). For example, if @ = {, then the force F on the double cone is

F=F=0,

Fy = +1-013 gb?y/(Ina/b)2. (8.16)

However, for the symmetric double cone (o = 1)and for the ellipsoid there is zero

force on the body. In general it may be shown from (5.22) that there is zero total

force on any such axisymmetric body which possesses fore—aft symmetry, a result

which may also readily be demonstrated by considerations of symmetry alone.

The general results (5.22) and (5.23) for the shear flow (8.1) always give the
dimensional force and couple on a body in the form

1771 = FZ =0,
F, = 2n K, ub?y/(n afb)?, (8.17)
a,nd Gl = Gs = O)

I } (8.18)

K,
02‘2”"“”2":1 nafb (mafb)

where K, K, and K, are constants given by

R MU M s

K, = +f A?dr,,
-1

+1 +1
K,=-(1 +ln2+lne)f A2d7'1+f A2IlnAdr,

LTI I - o LG

These results are valid for bodies for which A(r,) is a continuous function taking
the value zero at the ends of the body. They are not valid for blunt-ended bodies
(such as a circular cylinder of finite length) since the effect of the ends is to give
a force on the body of order (ub%y) and a torque on the body about the origin
of order (uab?y) which are larger than the values given by (8.18). Thus for blunt-
ended bodies with fore—aft symmetry in shear flow given by (8.1) [for which
F = 0] one would expect the total torque on the body to be given by

G,=G;=0,
Gy = L/mbz'y,}

where L is a constant which depends critically upon the shape of the blunt ends
of the body.

(8.20)



Long slender bodies in a viscous fluid. Part 2 655

9. Equivalent axis ratio

The motion of an axially symmetric body with fore-aft symmetry in shear
flow is given by (1.2) and (1.3). This motion is determined by the initial con-
ditions and also by the value of a single constant r, which is dependent only
upon the body shape. It was shown in §1 that

r, = (16", (0.1)
where G’ and G" are the couples exerted on the body when it is held at rest in a
shear flow with its axis respectively across and in the direction of the flow. For
sharp-ended bodies for which A(r,) is continuous and takes a value of zero at the
body ends, it is seen from § 8 that

” 92 I<2 I<3
G" = 2muab 7{1 /b+———(1 /b)2}’ (9.2)

where K, and K, are given by (8.19). Also from the general results given by Cox
(1970) for a long slender body it may readily be shown that the value of ¢’ is

3/ \lna/b  (Ina/b)?)’
where K, is a constant given by
K4=—(1n2~%)—-§f+lr§1n (——1‘7%)@. (9.4)
1), e ) -

Substituting the values of G and G’ given by (9.2) and (9.3) in (9.1) and expanding
in powers of 1/(Ina/b), one obtains

@ _ q
re/b _p{1+lna/b}’ (95)
where p and g are constants given by
4 \% 1 K,
p= (E) » 4= Q(K“—E)’ (9.6)

the values of K,, K, and K, being given by (8.19) and (9.4). It is to be noted that,
since the volume ¥ of the body is given by

+1
V= ﬂabzf_lzlzdrl = mab?K,, (9.7)

the above expression (9.6) for the constant p may be written as
P = (dnab?|V)3. (9.8)

The ratio of the equivalent axis ratio to the true axis ratio (i.e. r,/(a/b)) is seen by
(9.5) to tend to a constant value p as a/b — oo for the sharp-ended bodies con-
sidered here (i.e. bodies with A(r;) continuous and A(— 1) = A(+ 1) = 0). Whether
this ratio increases or decreases to this limiting value depends upon the sign of
the constant ¢.
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As an example consider the double cone described by (8.3) with & = 1 so that
it possesses fore—aft symmetry. Then by comparing equations (9.2) and (8.6)
it is seen that for this case the values of K, and K are

K,=%, K;,=%In2-1. (9.9)
Also the value of K, given by (9.4) is for the present case
K,=-2n2. (9.10)
1-5+
A

Tc/ (CL/b)

0"5;

03 1 - | '
1-0 10 100 1000

alb

Ficure 6. The ratio of equivalent axis ratio (r,) to true axis ratio (a/b) as a function of true
axis ratio for (A) a double cone, (B) anellipsoid, and (C) a cylinder of finite length. Theopen
circles represent the experimental values for a cylinder of finite length obtained by
Anczurowski & Mason (1968). The line —-—-— represents the asymptotic value for large
values of a/b for a double cone (case A),

Hence p= 2t q = %(1-2In2), (9.11)

80 that the expression (9.5) for the equivalent axis ratio r, becomes

a 0-4097
Te/(g) = 1'414—W. (9.12)

Similarly, for an ellipsoid given by
A(ry) = £ (1—13),
the values of K,, K, and K, are

K,=% Ky;=%-%4ln2, K,=%{-In2, (9.13)
so that p=1 and ¢g=0. (9.14)
Therefore r,/(a/b) = 1. (9.15)

This result also follows immediately from the definition of the equivalent axis
ratio 7, (see §1). The values of r,/(z/b) in terms of (a/b) derived from (9.12) and
(9.15) for the double cone and ellipsoid are given graphically in figure 6. In. § 8
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it was suggested that for blunt-ended bodies (or more generally bodies for
which A(r;) is piecewise continuous with a finite number of discontinuities in
—1 < r; < 1) such as a cylinder of finite length the value of G is no longer given
by (9.2) but is instead given by

G" = Luab®y, (9.16)

where L is a constant (see equation (8.20)). Since @' is still given by (9.3) it
follows that the value of the equivalent axis ratio 7, is given by

re/(g) - (Z_Z)%(]na/b)—é_ (9.17)

Experimental values of r,[/(a/b) for different (a/b) for a finite circular cylinder
are given by Anczurowski & Mason (1968). These are shown in figure 6 and are
compared with the values given by (9.17) with the constant L put equal to 5-45.
This value seems to give the best agreement between theory and experiment,
(9.17) then having the form

r/(ajb) = 1-24(In a/b)-3. (9.18)
The equation (9.16) for the couple G then becomes
Q" = 5-45uab?y, (9.19)

so that when the cylinder is aligned with the flow its ends have a force acting
on them (see § 8) across the flow of magnitude 2-72ub2y.

This work was supported by the National Heart Institute of the United States
Public Health Service (Grant HE-05911).
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