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A long slender axisymmetric body is considered placed a t  rest in a general 
linear flow in such a manner that the undisturbed fluid velocity is identically 
zero on the body axis. Formulae for the total force and torque on the body are 
found as an expansion in terms of a small parameter K defined as the radius-to- 
length ratio of the body. These general results are used to determine the 
resistance to axial rotation of the body and also the equivalent axis ratio of 
the body for motion in a shear flow. 

1. Introduction 
The behaviour of a long slender solid body of circular cross-section in a given 

creeping motion flow has been considered by Cox (1970) and Tillet (1970), while 
Batchelor (1970) has examined the behaviour of such bodies of non-circular 
cross-section. Neglecting fluid inertia effects, Cox (1970) obtained the force per 
unit length acting on the body by the fluid as an asymptotic expansion in terms 
of a parameter K defined as the ratio of the cross-sectional radius to body length. 
This theory, although successful in giving the translational resistance for 
such bodies, failed to give any results for cases in which the undisturbed flow 
field U(r) was identically zero on the body centre-line. One very important 
example in which this difficulty arises is concerned with the motion of a long 
thin axially symmetric solid body in shear flow. 

Relative to a fixed system of axes, consider an undisturbed shear flow U(r) 
given by 

Into this flow field an axially symmetric solid body with fore-aft symmetry 
is placed, the orientation of the body being determined by spherical polar angles 
0 and 9 (see figure 1). If such a body is free to move, then, for the case of the body 
being an ellipsoid of revolution, it was shown by Jeffery (1922) that the motion 
of the body is periodic and given by 

Qre tan0 = 
(r: cos2 $ + sin2 $)* ’ 

of the body is periodic and given by 
Qre tan0 = 

(r: cos2 $ + sin2 $)* ’ 
tan $ = re tan (2nt/T), 

where T is the period of the motion and has the value 

T = (2T /Y)  (r,+r;’), 
4 0  
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the quantity re being the axis ratio of the ellipsoid. The constant C appearing 
in (1.2) is called the orbit constant and depends only upon the initial orientation 
of the body. Bretherton (1962) showed that the above formulae (1.2) and (1.3) 
were valid for general axisymmetric bodies with fore-aft symmetry, the constant 
re no longer being equal to the actual axis ratio of the body but being a function 
of the complete body shape. This constant re is therefore termed the ‘equivalent 
axis ratio ’ of the body. The formulae (1.2) and (1.3) were verified experimentally 
for cylindrical bodies (rods and disks) by Trevelyan & Mason (1951), Mason & 
Manley (1956), Bartok & Mason (1957) and Goldsmith & Mason (1962) and for 
ellipsoidal bodies by Taylor (1923) and Anczurowski & Mason (1968). 

From the equations (1.2) it  may readily be shown that 

Consider a body moving in an orbit C = 00 so that the motion is entirely in the 
r2.r3 plane (0 = &r). Then, when the body axis is in the r2 direction, the angular 
velocity is 

and, when in the r3 direction, the angular velocity is 

9 - - Y 
dt r,2+1’ 

Hence rz is the ratio of the angular velocity of the body when its axis is in the r2 
direction to that when its axis is in the r3 direction. Now consider the body held 
firmly at  rest with its axis in the r2  direction. The fluid would then produce a 
couple on the body of magnitude 0’ say. Similarly for the body held firmly at 
rest with its axis in the r3 direction, it would experience a couple of magnitude 
6’” say. The couples G’ and G” on the body must be proportional to  its angular 
velocities if they were free to rotate in the above orientations. Thus one sees that 
the equivalent axis ratio re is given by 

re = (G’/G”)*. (1.5) 

The value of G‘ may be evaluated by using the results given by Cox (1970). 
However, G“ cannot be evaluated since, for the body at  rest with its axis in the r3 
direction, the undisturbed flow field U(r) is identically zero on its centre-line. 

In the present paper we therefore consider a long slender solid body of circular 
cross-section placed in a given creeping motion flow field U(r) which is identically 
zero on the body centre-line. For simplicity it is assumed that the body centre- 
line is straight and that the flow U(r) increases linearly with distance from an 
origin. The total force and torque acting on the body are found as an asymptotic 
expansion in terms of the body radius-to-length ratio K. It is also shown how these 
resnlts are modified by the presence of solid walls near the body considered. 

In the final sections the general results are used to determine the rotational 
resistance and the equivalent axis ratio re for long slender axisymmetric bodies 
with fore-aft symmetry. 
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2. General problem 
Consider a long slender body S of circular cross-section, the length of the body 

being 2a and a characteristic value of the cross-sectional radius being b (b  < 1). 
It is assumed that the body centre-line is straight so that one may take rectan- 
gular Cartesian axes with the 1 axis lying along the body centre-line, the origin 
of co-ordinates 0 lying at  the mid-point between the ends of the body (see figure 1). 
This body is assumed to be placed in a fluid of viscosity i.4. Then, by using dimen- 
sionless quantities based upon the length a, the viscosity ,u and a characteristic 
velocity U ,  one defines a dimensionless position vector r relative to the co- 
ordinate system. The dimensionless cross-sectional radius of the body may be 

3 

FIGURE 1. Spherical polar axes. 
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3 

r- 
FIGURE 1. Spherical polar axes. 

written as ~ h ( r , ) ,  where K is the ratio b/a and h(r,) is a dimensionless function of 
rl ( - 1 < rl < + 1). The two ends of the body are then rl = 5 1. It will be assumed 
that the shape of the body S determined by h(rl)  is such that (i) h(r,) is a con- 
tinuous function of r, and (ii) A(-1) = A(+  1) = 0. Thus blunt-ended bodies 
such as a cylinder of finite length are omitted from the present theory. This is 
because it will be shown that for such cases the effect of flow around the body 
ends dominates over the effects of the flow around the rest of the body. 

It is assumed that the fluid into which the body X is immersed is undergoing 
a motion U(r) which satisfies the creeping motion equations 

VW-VP = 0, v.u = 0, (2.1) 

P being the dimensionless pressure field corresponding to U. It is assumed that 
the body S is held fixed and that the flow field U(r) is identically zero along the 
r ,  axis. Also it is assumed that U(r) varies linearly with r so that 

U, = Aijri and P = 0, (2.2) 
40-2 
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where A ,  is a constant second-order tensor. Now since U = 0 for all rl if 
r2 = r3 = 0, it  follows that 

A ,  = 0 for all i. (2.3) 

Hence = Ai2r2+ Ai3r3. (2.4) 

rl = z, r2  = pcos8, r3 = psin8, (2.5) 

Changing to cylindrical polar axes (see figure 2) p, 8, z defined by 

the components Up, U,, U,  of U relative to these axes may be written in the form 

FIGURE 2 .  Cylindrical polar axes with the z-axis lying along body centre-line. 

which, by making use of (2.4) and (2 .5 )  and also by observing that Az2+ A,, = 0 
(from the equation of continuity V.  U = 0 ) ,  may be transformed into 

where 

The complete velocity field (i.e the flow field U together with the disturbance 
flow produced by the body 8)  is defined as u, this flow field also satisfying the 
creeping motion equations 

p being the pressure field corresponding to U. 

v2u-vp = 0, v.u = 0, (2.9) 
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One makes expansions of this flow field (u,p) in terms of the parameter 

K = b/a (2.10) 

in a manner similar to that used by Cox (1970) by defining an outer expansion in K 

for which r is used as the independent variable and u andp as dependent variables. 
At each point P of the centre-line of the body S one may define an inner expansion 
in K for which Z. is used as the independent variable and ii and jj as dependent 
variables, where F, ii and p are given by 

E = ( r - r * ) / K ,  5 = u, @ = ~ p ,  (2.11) 

where r* is the position vector of the point P. In the outer expansion, a is the 
unit of length and, as K -+ 0, the body S becomes a line singularity (i.e. b + 0 )  
along the rl axis from rl = - 1 to rl = + 1, whereas, in the inner expansion at  
each point P of the centre-line, the unit of length is b and, as K -+ 0, the body S 
becomes very much like a cylinder of infinite length (since a --f a). Actually one 
has an infinite number of inner expansions corresponding to each point of the 
centre-line of the body S. However, all such inner expansions may be considered 
simultaneously by taking a general point P of the body centre-line. The inner 
expansionat sucha point is then matched onto thesolution for the outer expansion 
at  the same point P. 

3. Inner expansion 
Consider the flow in the neighbourhood of a general point P on the centre-line 

of the body 8. Since the undisturbed flow U(r) given by (2.7) is independent of x ,  
it follows that, in inner variables for the inner expansion at P, this flow is given by 

(3.1) i 
Up = A K ~  cos 20 + B K ~  sin 28, 

U, = D K ~  cos 0 + E K ~  sin 8, 
Ue = - A K ~  sin 26, + B K ~  cos 20 -I- C K ~ ,  

the co-ordinates ( p ,  0,X) being the polar co-ordinates of the inner expansion, i.e. 

p = p / K ,  2 = ( Z - X * ) / K ,  (3.2) 

where z* is the value of z a t  the point P. 
Expressing (2.9) for the total flow field ( ~ , p )  in cylindrical polar co-ordinates 
( p ,  8, z )  and changing to inner variables ( p ,  8, X), one obtains for the components 
up, Go, ?is of the inner flow field, 

(3.3) 
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Thus, writing (ii, p )  in an expansion of the form 

p = 

ii = /Cii1+/c2a,+ ... 
(3.4) 

it is seen that both the flow fields (El, p1) and (ii2,Pz) satisfy equations of the 
form (3.3). Also, on the surface of the body S,  one requires the no-slip boundary 
condition to apply, i.e. 

Now, in the neighbourhood of P, the surface o f S  maybe written in outer variables 
as 

which, when expressed in inner variables, becomes 

ii = 0 on 8. (3.5) 

(3.6) 

(3.7) 

ii = 0 on p = h(z*)+KZdh/dz*+ .... (3.8) 

One therefore lets ii, = 0 on p = A@*), (3.9) 

p = K [ h ( Z * )  + (2 - X * )  dh/dZ* f . . .], 

p = h(2") f K z  dh/d2* f . . .. 
Therefore the inner boundary condition on (8, ?j) becomes 

so that the value of 5, on p = h(z*) + K X  (dh/dz*)  + . . . is 

(3.10) 

where (afi,/ap), is the value of aii,/ap evaluated on p = A@*). From the expansion 
(3.4), it is seen that, on P = A@*) + KZ(dh/dz*) + . . ., ii has the value 

so that the boundary condition (3.8) reduces to  

ah aa, 
az* ap 0, = -2-- on p = A ( z * ) .  

(3.11) 

(3.12) 

In  order to obtain the fist-order flow field (a,, p,) ,  one solves equations of the 
form (3.3) with inner boundary condition (3.9). From the form of equations (3.1), 
it is reasonable to assume an outer boundary condition for (ii,, p,) of the form 

(3.13) 1 (UJP - A p  cos 28 + Bp sin 28, 

(UJO - A p  sin 20 + BP cos 28 + Cp, 

(Z1),-+Dpcos8+Epsin8 as p - t o o .  

Therefore the flow field (ii,, p , )  is independent of 2 and so it may be shown that 
this flow field, in order to satisfy equations (3.3) and possess the asymptotic 
form (3.13), must be of the form 

(Til), = cos 28LAp + 
(EJO = sin 26[ - Ap + ~ ( , p - ~ ]  + cos 2#[Bp - a4p-3] + [Cp + a5 p-11, 

(ZJs = cos O[Dp + (3.14) 

+ a2,?F3] +sin 2@Bp + a,p-l+ a4jVJ, 

+sin 8[Ep + a, p-l], 
- 
p ,  = cos 2#[2~(,p-~] +sin 20[2a,p-2], 
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where al, a2, .. ., a7 are constants which may be determined by applying the 
inner boundary condition (3.9). Thus the first-order inner flow field (al, pl) may 
be written as 

( U J P  = A(p - 2A2p-l + h4p-3) cos 20 + B(p - 2A2p--l + A4p--3) sin 28, 

(uJe = A (  -p + A4p-3) sin 28 + B(p - A4p-3)  cos 28 + G ( p  - A2p-l), 

(GI)# = D(p - A2p-l) cos 8 + E(p - A2p-l)  sin 8, 

(p 1 -  - - 4AA2p-2 cos 28 - 4Bh2p-2 sin 20. 

(3.15) 

(3.16) 

i 
On the surface p = A, the value of aEl/i3p is therefore given by 

i a(G)p lap  = 0, 

t3(El)e/ap = - 4A sin 20 + 4B cos 28 + 2C, 

a(ul)#/8p = 2 0  cos 0 + 2E sin 8, 

so that the boundary condition (3.12) on the second-order inner flow field (a2, p 2 )  
may be written as 

(3.17) 1 ( .u2 )p  = 0, 

(Ti2)@ = - X(dA/dz*) ( - 4A sin 28 + 4B cos 28 + 2C), 

(G2)# = - X(dh/dz*) ( 2 0  cos 8 + 2E sin 19) on p = A@*). 

Thus the flow field (a2, p 2 )  satisfies the equations (3.3) with an inner boundary 
condition given by (3.17). However, no outer boundary condition will be imposed 
on this flow field at this stage since this will be determined by the matching of 
inner and outer expansions. Therefore one may write 

a, = ii; +a;, p 2  = p: +p;,  (3.18) 

where (a,*, 9;) is any particular flow field satisfying (3.3) with boundary con- 
ditions (3.17), so that the flow field (a;,&) also satisfies (3.3) but satisfies the 
boundary condition 

0; = 0 on p =  A(z*). (3.19) 

For the flow field (ii;, p;),  one may take 



x ( -p-1+ h2p-3) + cos @(Dh dh/dx*) (1 - h2F-2) 
\ 

+ sin 8(Eh dh/dz*) (1 - h2p-2), 

= X sin 28(4Ah dh/dz*)  (h2p-3) + X cos 28(4Bhdh /dx*)  ( - h2jY3) 
+Zp-l( - 2Ch dh/dz*) + sin 8(Dh dh/dx*) ( 1  - h2p-2) 

+ cos B(Eh dA/dz*) ( - 1 + h2p-2), 

+ X cos 8( - 2 D h  dh/dx*) p-l+ sin 8( - 2 E h  dh/dz*) p-1, 
( E z  )z = cos 2 8 ( 2 A h  dh/dz*)  ( I  - h2p-2) + sin 28( 2 B h  dh/dx*) (1  - h2js-2) 

23; = X cos 28( - 8 A A  dA/dz*) p-2 + 2 sin 20( - 8Bh dh/dx*) p-2 

(3.22) 

(3.21) 

where (fil,jil) and (ti:,$) are given respectively by the equations (3.15) and 
(3.21),  the flow field (ti;, p i )  not yet being determined. Expressing the velocity 
field ( ~ 0 ~  + ~ 2 0 : )  and pressure field (pl + KF;) in terms of outer variables, one 
obtains 

~(u , ) ,  + ~ 2 ( i i ; ) ~  = {Ap cos 28 + Bp sin 28)  + K ~ {  - 2Ah2p-l cos 28 - 2Bh2p-I sin 28 
- (2  - 2") (4Ah dh/dz*)p-l cos 28  
- (2 -2" )  (4BhdA/d~*)p-~sin28 
+ (Dh dA/dz*) cos 8 + (EAdA/dz* )  sin 8} + O ( K ~ ) ,  

K(E& +- K ~ ( U ; ) ~  = { - Ap sin 28 + Bp cos 28  + Cp} 
+ K2{ - Ch2p-' - (2Ch dh/dZ*) ( 2  - X * )  

+ (Dhdh/dx*) sin 8 - (Eh  dh/dz*) cos 8}  + O ( K ~ ) ,  

+ K ~ {  - Dh2p-1 cos 8 - Eh2p-I sin 8 + ( 2 A h  dh/dz*) cos 28 
+ (2Bh dA/dz*) sin 28  + ( Z  - 2 % )  ( - 2 D h  dh/dx*)  p-I cos 8 
+ ( z  - x * )  ( - 2 E h  dA/dz*) p-l sin S} + O ( K ~ ) ,  

K ( u ~ ) ~  + K ~ ( U ; ) ~  = {Dp cos 8 + Ep sin 8}  

- p1 + K$ = K ~ {  - 4Ah2p-2 cos 28 - 4Bh2p-2 sin 28 
+ (2  - x * )  ( - 8Ah dh/dz*) p-2 cos 28 
+ ( x - z * )  ( -  8Bhdh/d~*)p-~sin28+(4Dhdh/dz*)p-l~0~8 
+ ( 4 E h  dh/dz*) p-l sin O} + O( K ~ ) .  (3.23) 

In  this equation (3.23),  the quantity A2 is evaluated at  x = x * .  Thus, by noting 
that 

P ( 2 )  = A2(2*) + 2 ( x - x * ) h ( ~ * ) d h / d z * + O ( ~ ~ - x * ~ 2 ) ,  



+ K ~ {  - 2Ah2p-~COS 28 - 2Bh2p-1 sin 28 
+ (Dh dhldz) cos 0 + (Eh dhldz) sin S} + O ( K ~ ) ,  

+ K ~ {  - Chzp-l+ (Dh dhldz)  sin 6' - ( E h  dhldx)  cos 8)  
K ( U ~ ) ~  + ~ ~ ( i i z ) ~  = { - Ap sin 28 +Bp cos 28 + Cp} 
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+ o(K41, 

K ( u ~ ) ,  + K ~ ( u ; ) ,  = {Dp cos 8 + Ep sin 8} + K ~ {  - Dh2p-l cos 6' 
- Eh2p-l sin 0 + (2Ah dhldz) cos 20 

(3.24) 1 
I +(2Bhdh/dz) sin28}+0(K4), 

+ (4Dh dhldz)  p-l cos 8 + (4Eh dhldz) p-l sin 8} 
p1 + ~ j i z  = KZ{ - 4Ah2p-2 cos 28 - 4Bh2p-2sin 28 

+ 0 ( K 4 ) ,  

where the value of h is now evaluated at  z instead of z*. In  the terms of order K~ 

in the above equation (3.24), the expressions for the velocity are valid to O(po) 
if dh/dz is also evaluated at  z instead of z*. 

4. Outer expansion 
For the outer expansion, the body X becomes a line singularity along the 

rl axis from T~ = - 1 to r1 = + 1 and near this singularity the outer flow field 
(u,p) must be matched onto the inner expansion. Since the velocity field 
( ~ f i , + ~ % i , * )  and pressure field (j71+~p:) when expressed in outer variables is 
given by (3.24), it is reasonable to expect the outer velocity and pressure fields 
to be expandable in the form 

U = U + K 2 U 2 +  ..., Ip = K 2 p 2 f  ..., (4.1) 

where U(r) is the undisturbed velocity field given by (2.7). It is seen that the 
term of order KO in (3.24) matches onto the term of order KO in (4.1). Also com- 
paring terms of order ~ 2 ,  it is seen that, as p + 0, one needs 

( u ~ ) ~  N ( -  2Ah2cos 28 - 2Bh2sin 28)p-I, 

( u ~ ) ~  - ( - Dh2 cos 8 - Eh2 sin 8) p-l, (4.2) 
( 4 0  - (-Ch2)p-l,  

p 2  N ( - 4Ahz cos 28 - 4Bhz sin 28) p-2. 

Since we require that u - U as r -+ 00, the outer boundary condition on (u2 ,p2 )  
is that 

u,+O as r - t m .  (4.3) 

Also the flow (u2,p2) must satisfy the creeping motion equations. It is therefore 
seen that the boundary conditions (4.2) and (4.3) can be satisfied by taking 
(u2 ,pz )  to be a flow produced by a line of force doublets on the rl axis from 
rl = - 1 to rl = + 1. However, the creeping motion flow satisfying boundary 
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conditions (4.2) and (4.3) is not unique since one could add on a line of force 
singularities on the r1 axis from rl = - 1 to rl = + 1.  Therefore one may write 

u2 = u; + u;, p ,  = p ;  + p i ,  (4.4) 
where (u;, p ; )  is a flow field satisfying the creeping motion equations and boundary 
condition (4.3) and has the property that, for lrll < 1, 

u; = o(p-') as p-+ 0. (4.5) 

The flow field (u; ,p;)  then satisfies the boundary condition (4.2) and is the flow 
produced by a Iine of force doubIets given by 

where R is the vector (R,, 0,O) of a general point on the line singularity, and 
gjk(R,) is the magnitude of the force doublet at r = R. We now examine the form 
of the velocity u; near the line singularity. Thus consider points r = (r,, r2, r3) 
with lrll < 1 and r2 = p cos 8, r3 = p sin 8 withp < 1.  The integrals in (4.6) have a 
singularity in the integrand at R = r if the point r actually lies on the singularity. 
Thus the range of integration - 1 < R, < 1 is divided into the three separate 
intervals-1 < R , < ~ , - ~ , r , - - c <  R , < r , + ~ a n d r , + s < R ~ < + l , w h e r e c < l  
is arbitrary and independent of p. 

The contribution to the velocity field U; from the force doublets g,,(R,) is 
given by 

(4.7) (G)i = (IlSn) (Ii+4),  

The integral Ii may be evaluated by noting that R, is approximately equal to r, 
in the range of integration. Thus, by changing variables from R, to q5 where 

R, = rl + p  tan $, (4.10) 

and noting that one may write for R, in the range of integration 

912(R,) = 912(rJ + P tan $ as12/ar1+ * * * > (4.11) 

i t  is seen that Ii may therefore be written as 

+ Si2( - sin q5 + 3 cos2 0 sin $ cos2 q5) + 34,  sin 8 cos 8 sin q5 cos2 $1 dq5 

+ Si2 (- + 3 cos2 8sin2 q5 cos $ + 3Si3 sin 8 cos 8 sin2$ cos g5 
cos $ 

+ ..., 
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which may be evaluated to give 

8912 Ii = - 4g12(?-1) ai1p-l cos 8 + 2 ~ Si2 lnp 
ar1 

a912 + ~ {ai,( -In 4 - 2 Ins + 2 + 2 cos28) + 26,,sin 8 cos S} + . . . . 
af.1 

(4.12) 

The integral Ji may be simplified by noting that there is no singularity in the 
range of integration even if r lies on the r1 axis. Thus 4. must be of O(p0) as p -+ 0 

~ 

and may be evaluated to this order by simply putting p = 0 in the integrand. 
Thus 

Ji = a,, (4.13) 
-1 

This expression is singular in s as s + 0 but this singularity may be shown to 
exactly cancel out the singularity of - 26iz(aglz/ar,) Ins appearing in the ex- 
pression (4.12) for 4, so that the value of u: tends to a finite limit as 6 -+ 0. In 
a similar manner, the contributions of the force doublets g13, g,,, g,,, g,, and g,, 
to Ii and Ji and hence to the flow field uz may be found. Then assuming that 
gll, g21 and g,, are zero (since their contribution to uz may be transformed into 
that due to a line force distribution and so may be included in the flow field uh), 
all the contributions to uz may be added to give the asymptotic form of ug 
near p = 0, lrll < 1 as being 

8n(u,*), - p-" - 4g12 cos 8 - 4g,, sin 81 

I + %2( -~n 4 - 2 Ins + 2 + 2 cos20) +- 8933 ( -ln 4 - 2 In s + 2 + 2 sin281 , 
ar1 

(4.14a) 
8n(u,*), - p-1[2g2,( -sin 8 - 2 sin 8 cos20) + Zg,,(sin 8- 2 sin 8 cos2 0) 

+ zg,, cos 0( 1 - 2 cos2 8) + Zg,, cos 8( 1 - 2 sin2 O)] 

(414b) I + ~ ( -In 4 - 2 lne  + 2 + 2 cos28) +--- ag,, sin 8 cos 0 , [Z af-1 
8n(u,*), - p-l [2g2,(cos 8-  2 sin2 8 cos 8) + 2g,,( - cos 6 - 2 sin2 8 cos 8) 

+ 2g,, sin 8( 1 - 2 cos2 8)  + 293, sin 8( 1 - 2 sin2 O)] 
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Thus, as p --f 0, the components ( u ; ) ~ ,  (u : )~ ,  (@), of this velocity field have the 
asymptotic form 

8n(u; lP p - 1 ~  - 4g,3 sin e cos e - 4g3, sin e cos e + 29,,( 1 - 2 cos2 o)  
+ 2g3,( 1 - 2 sin2 8)]  + lnp 

dR1 
( r l - R 1 )  (glZCos efg13sin e,  

h-R1I3 

( - ln4 - 2 lne + 2) + 
(4.15a) 

8n(ug), - p-1[2gZ3 - 2g3,1 + ~ n p  [ - 2 a912 %sin 0 + 

dR1 
( r ,  - R,) ( - g,, sin 0 + 913 cos 0) 

Irl - RII 

( -1n4-2In~+2)  ) (4.156) 1 
8n(u,*), - p-l[ - 4g12 cos 0 - 4g13 sin 01 +In p 

+ ( - ln 4 - 2 ln E + 2 + 2 s inz~)]  . (4.15~) 

Since ujT must satisfy the boundary conditions (4.2) it follows that g,,,  913, 923,  

g3,, g,, and g,, must be chosen such tha t  

2r1 

g23 + 93, = Bh2. 8n, 

/Jz3 - g3,  = - &Ch2.8n 

g2 ,  - g3, = Ah'. 8n, 

g,, = $Dh2. 877) 

g13 = $Eh2. 8n. 
Now the terms 

1 (4.16) 

may be written in the form 
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where it is to be observed that the coefficient of Q(g22+g33) is of the same form 
as that of gll in the integrand of (4.6). Since it has already been assumed that 

(4.17) g,, = 0, one may here take 

Hence (4.26) and (4.27) give the values of the quantities g12, g13, . . . , g3, as being 

g22+933 = 

j (4.18) 
g12 = 2nDA2, 913 = &TEA', 923 = 2n(2B- C) A', 

g32 = 2n( 2B + C) h2, g22 = 4rAh2, 933 = - 4nAhz. 

Substituting these values into the asymptotic expansion (4.15) for u: one obtains 
that as p + 0 

(u;), N p-1( - 2Ah2 cos 28 - 2Bhz sin 20) + lnp(h dh/drl)  (D cos 6 + E sin 8 )  

+ (hdA/drl)  ((D cos 8+ E sin 8) ( -In 2 -In e+  2)) 

(a:), N p-l( - Ch2) +lnp(h dA/drl)  ( - D sin 0 + E cos8) 

+ ( A  dhldr,) {( - D sine+ E cos 8) (-In 2 -Ins + l)} 

+ $( -D sin O+ E cos8) 

(4.1 9 a) 

(4.19b) 

(a,*), N p-l( -Dh2cos8-Eh2sin8) +(Adh/dr,)  (2Bsin28+2A cos28). (4.19~) 

In order to obtain the velocity field u2, one has to add to uz the velocity field u; 
(see equation (4.4)), where u; has the property (4.5). Thus u; may be taken to be 
the flow field produced by a line of forces fj(R1) acting along the rl axis from 
rl = - 1 to rl = + 1. Therefore this velocity field is given by 

The asymptotic form of uh near the r1 axis ( lrll < 1) is now found in a manner 
similar to that for u: by dividing the range of integration into the intervals 
-1 < R l < r l - c , r l - c <  Rl<r l+eandr l+c<R,<+l .Thuswr i t ing  

it may be shown that the contribution from fl(Rl) as p -+ 0 is given by 

4f,(R,)6,1(ln2+In€-lnp-Q), I 
(4.22) 
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the contributioils from f2(Rl) and f3(Rl) to the asymptotic expansion of uh for 
p 3 0 being similarly obtained. The addition of these contributions then gives 

8n(u;) 2(f2cos8+f3sin8) (ln2+lne-lnp+ 1) 

8n(u;), 2( - f2  sin 8 +f3 cos 8 )  (In 2 +In e - lnp) 

The asymptotic form of u2 as p --f 0 is obtained by adding the equations (4.19) 
and (4.23). Thus 

(u2), - p-1( - 2Ah2 cos 28 - 2Bhz sin 28) + 1n p 

+ Eh----2- sin8 + Dh--2- cos8+ EA--2- sin8 ( z1 9 1 (( :;, k) ( 2, k) 1 
x (-In 2 -1ne- 1) + 3 A- (D cos 8+ E sin@ + $( +D cos 8+E sin0) ( 3 

(u& . -p - l ( -Ch2)+lnp 

+ h - ( -D sin 8 + E  cos 8 )  + a( - D sin B+Ecos 8)  ( 3 

The value of fj(R1) and hence of u, may be a function of K so long as the term 
K ~ U ~  in (4.1) is larger than the next term (of order K ~ )  in this expansion. It may 
be shown that one must take fj(R1) to be of the form 

(4.25) 

so that u2 possesses an expansion 
u2 = u;+u20+-+- u21 u 2 2  +..., (4.26) 

l n ~  (lntc)2 
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where uz0, u,, and u,, are given by (4.20) with f,(R1) replaced by (fo)j, (f,), and 
( f &  respectively. Therefore the outer expansion (4.1) takes the form 

(4.27) 

Substituting the expansion (4.25) into (4.24), one obtains the asymptotic forms 
of u , ~ ,  u,,, . . . as p -+ 0. By noting that the outer expansion can possess no term 
like ( K ,  In p)  [since this would imply a term of order ( K ,  In K) in the inner expansion], 
it follows from (4.24), (4.25) and (4.26) that ( f 0 ) ,  is given by 

(f0), = 0, ( f O ) ,  = 47rDh dhldr,, = 4nEh dhldr,. (4.28) 

We now examine the integral 

(4.29) 

appearing in (4.24). Integrating this by parts, one obtains 

Now, since A(-1) = h ( + l )  = 0 

and h2(r, - E )  = h2(rl) - 2h dhldr,, 

h2(r, + E )  = h2(r,) + 2h dhldr,, 

it follows that the above expression (4.30) for K may be simplified to give 

(4.31) 

By substituting the expansion (4.25) into (4.24) and by making use of the results 
(4.28) and (4.31), one may obtain the asymptotic form of U$ +u,, for p -+ 0 as 

(u;), + (uz0), p-l( - 2Ah2 cos 28 - 2Bh2 sin 28) + 2(h dhldr,) (D cos 8 + EsinO), 

(zL;), + (uz0)= - p-l( - Dh2 cos 8 - Eh2 sin8) + (A dhldr,) (2B sin 28+ 2A cos 28). i ( G ) B  + (u20)s f -v  - Qh2), 

(4.32) 
For the inner expansion, the velocity field ii is given by 

(4.33) 

where ( ~ i i ~ + ~ ~ i i g ) ,  when expressed in outer variables, is of the form (3.24). 
The terms of order KO in (3.24) have already been matched and it is seen that in 
order that terms of order K, be matched one has to choose a velocity field ii; in 
the inner expansion such that when expressed in outer variables 

B = K s l  + K,((ii: + ii~) + 0 ( ~ 3 ) ,  

(4.34) 

(iii), N ( A  dhfdr,) (D cos 8 + E sin 8) ,  
(a& N ( A  dhldr,) ( - D sin 8 + E cos B), 
(Ti!& N 0, as p - f  0. 

Thus, relative to the Cartesian axes, 

(4.35) 
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1 (u;), = (2Hlcos0+2K,sin8)+lnK{(2Hz+ H,-2H1ln(p/h))cos 0 
I 

+ (2Kz + K ,  - 2K, In (p /h) )  sin O} + . .., 
1 

In K 
( E ; ) ~  = ( -  sin O +  2 ~ ,  cos 0) +-{( - ZH, + H, + ~ H , l n  (p /h) )  sin o 

(?i& = 0. 

+ (ZK, - K,  - 2K, In @ / A ) )  cos 0} + . . ., 

which represents a uniform flow. Also 0; satisfies the creeping motion equations 
and the no-slip boundary condition (3.19) on p = h(rl). Hence one may find the 
flow field Ti; by following the analysis given by Cox (1970). Thus we take 

(ZJO = H{1 - A2p-2 + 2 In (p/h)}sin 0 + K{ - 1 + h2ir2 - 2 ln(p/h)} cos 0, 
( G ; ) ~  = H(1 -h~p-2-2ln(p/h)}cosO+K{1 -h2p-2 -  21n (p/A)}sin0, 

(4.36) I (%), = 0, 

where H and K may be functions of K so long as they are much larger than K 

in the limit of K + 0. We shall take 

(4.38) ' 

i 

i + ... ) H = - + -  H* Hz 

K='+- K Kz 

1nK ( l n K ) 2  

1nK (lnK)2 
+ .... 

(4.37) 

(4.40 c) 

The matching of terms involving lnp in (4.38) and (4.40) gives 

so that by (4.39) 
(f1)l = 0, (f1)2 = 8nHl, (f1)3 = 8nKl, 

(f1)z = 4nA(dA/dr,) D, (f1)3 = 4nh(dh/d~,) E .  (4.41) 
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Also the matching of terms of order po in (4.38) and (4.40) gives the values of 
H, and K ,  as 

The substitution into these expressions (4.42) of thevalues of Hl,K1, (f1),and ( fJ3 

from (4.39) and (4.41) yields 

Continuing the matching process by substituting (4.25) and (4.26) into (4.24) 
and equating terms of order (lnK)-2 give the asymptotic form of u,, for p -+ 0. 
Then, by matching the term of order (lnp) with that appearing in the coefficient 
of (lnK)-, in (4.39)) one obtains the values of (fi)i as 

so that 
(fill = ' 9  (f2)2 = 8nH29 (f2)3 = 8nK27 

dR17 

(4.44 a) 

(f2)2/8n = &h(dh/dr,) D[$ -In h + In 2 +In €1 + $D 

5. Force on body 
The results given in $5 3 and 4 for the velocity field are now collected. The 

equations (3.4)) (3.15), (3.18), (3.21)) (4.36), (4.37)) (4.39) and (4.43) give the 
inner velocity field ii as being 

iiL1 ii;+-+- + .. .} + .. .) 
1nK (InK), 

where a,, 0:) a$ and ii;, are given by 

(Ul)e = A(-p+h4p-3)sin28+B(p-h4p-3) cos 28+C(p-A2p-l), 
(qP = ~ ( p  - zh2p-1+ ~4p-3) cos 28 + ~ ( p  - 2~2p-1+ ~4p-3) sin 20, 

(El), = D( - p  + A2p-l)  cos 8 + E(p  - h2p-1) sin 8; 

(U:)p = 4h(dh/dr1) ( -p-l+ 

(E& = 4h3(dh/drl) p-%(A sin 28 - B cos 28) 

(;t12*)B = 2h(dh/dr1) (1 - h2jT2) ( A  cos 20 + B sin 20) 

z(A cos 28 + B sin 28) 
+ h(dh/dr,) (1 - h2p-,) (D cos 8 + E sin 8))  

- 2Ch(dh/dr1) p-lX + h(dh/dr,) (1 - 

- 2h(dh/drl) p-l.Z(D cos 8 + E sin 8) ; 

( D  sin 8 - E cos 8 )  (5.3) 

41 F L Y  45 
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(5.4) 

i 
I (U& = &h(dh/dr,){l -Pp-2--2112 (p/h)}Dcos0 

+ ih(dh/dr,) { 1 - h2p-2 - 2 In (p/h))  E sin 8, 

+ +h(dh/dr,) { - z + h2p-2 - 2 In (p/h)}E cos 8, 
(u& = &h(dA/dr,) { 1 - hzp-2 + 2 In (p/h))D sin 8 

(u;l)z = 0; 

(u.;,)~ = H,{ 1 - h2p-2 - 2 111 @/A)} cos 0 + K,{ 1 - h 2 F 2  - 2 In @/A)}  sin 8, 

( E ; , ) ~  = H,{ 1 - h2p-2 + 2 In (p/h)} sin 8 + K,{ - 1 + h2ir2 - 2 In @ / A ) }  cos 0, (5 .5)  

( G Z ) ,  = 0; 

where H, and K,  are constants given by 

H, = ih(dh/dr,) D{$ -In h + In 2 +In s} + $D dR1, 

K ,  = ih(dh/dr , )  E{& -In h + In 2 + Ins} + t E  
+' 

dR,. (5.6) 

Also, from (2 .7) ,  (4.271, (4 .6) ,  (4.18), (4 .20) ,  (4.28),  (4.41) and (4.441, it is seen that 
the velocity field u in the outer expansion may be written as 

(u;+uz0)+-+- u21 u 2 2  

Ink- (Ink-), 

where U is the undisturbed flow field 

Up = Ap cos 28 + Bp sin 28, 

V, = - Ap sin 28 + Bp cos 28 + Cp, 

Us = Dp cos 0 + Ep sin 0; 

and where ug is the flow 

produced by a line of force doublets of magnitude gj,(Rl) given by the matrix 

O D  

0 2 A  (2: C ) )  . (5.10) 

O ( 2 B + C )  - 2 A  

The remaining flow field K~{U, , ,+  (u,,/lnK) + (u,,/(lnk-)2)} in the equation (5 .7 )  is 
given by 

which is a flow produced by a line of force of magnitude 

{(fo)j  + ( f i ) j / l n~+  (fi)j/'(1nK)2}, 
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where (jJi, (fJi and are given by 

(5.12) 

(5.13) 

the quantities H, and K ,  being given by (5.6). Hence from the outer expansion 
it is seen that the forces acting on the body are equivalent to a force 9 and a 
couple 92 per unit length acting on it, where 

The total force F and torque G acting on the body about the origin are given 
bv 

(5.15) 

where r is the position vector of a general point on the body centre-line and is 
therefore of the form (r,, 0,O). Since h = 0 at r = 1 it  may readily be shown that 

and 

(5.16) 

(5.17) 

Thus, substituting theexpressions (5.14) into (5.15) and by making use of (5.16) 
and (5.17), one obtains for the total force F and torque G acting on the body 

where 

(5.18) 

(5.19) 

41-2 
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G2/8n = - - ~ E hzdr ,  + 
4 1 n ~  K 2  s" -1 

GJ8n = +--D h2drl-- 
k1:K .fI: 

(5.20) 

It should be noted that the terms of order K~ in the expressions for G2 and G, 
are identically zero. I f  one substitutes the values of H2 and K ,  from (5.6) into 
the formulae (5.19) and (5.20) and notes that in addition to (5.16) and (5.17) one 
has 

then the above values of components of F and G may be written as 

(5.21) 

(5.22) 

and 

(5.23) 

6. Wall effects 
The theory given in $53, 4 and 5 for the hydrodynamic force and torque 

exerted on a long slender body S is valid for an undisturbed fluid flow of the 
form (2.7), there being no solid boundaries present. We now consider the pos- 
sibility of a solid wall W being present at  a distance from the body of order a. It is 
assumed that upon W the fluid has a given velocity U,. Thus one might for 
example consider (i) a body S placed in a shear flow bounded by a plane solid 
wall W ,  for which the undisturbed flow U (relative to axes fixed in the body) is 
given by (see figure 3) Ui = DSilr3, 

which possesses the value (U,)$ = --D&{,k 
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on the wall W at r3 = -k; (ii) a body S rotating about its rl axis in a fluid at 
rest bounded by a plane wall W at r ,  = - k (see figure 4). By adding a rotational 
flow to the system about the rl axis it may be shown that this problem is equiva- 
lent to one for which 

U, = 0, U, = - Cr3) U, = + Cr,, 

FIGURE 3. Body in shear flow in the neighbourhood of a plane solid wall. 

FIQURE 4. Body rotating about its symmetry axis in the neighbourhood 
of a plane solid wall. 

with a value of 

on the wall W at r3 = - k. 
Since the wall is at  a distance of order a from the body it is situated entirely 

within the outer region of expansion. Hence the analysis of the inner expansion 
given in 3 3 remains unaltered. The asymptotic form of u, in the outer expansion 
is therefore still given by (4.2). However, in dividing this velocity field into flow 

( U,)+ = + Cr, Si, + Ck Si, 
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fields (uz, p:)  and (u:, p ; ) ,  it is seen that (u:, p z )  is now given by (cf. equation 
(4.6)) 

and represents the flow field produced by a line of force doublets in the preseiice 
of the walls W .  The quantities fii(r, R) and g,(r, R) in the above expressions are 
the velocity and pressure Green's fimction for creeping motion flow inthe presence 
of the walls W ;  i.e. fii(r, P) and gj(r, 9) are defined by the equations 

fi i ,k~-gi,~+S~jS(r-P) = 0, fii,{ = 0, (6.2) 

fii = 0 on W ,  (6.3) 

with the boundary condition 

S(r - P) being the Dirac delta function. 
The expression for the velocity field in (6.1) may be written as 

where the integrand of the second integral possesses no singularity at R = r. 
Now, asp -+ 0, the first integral in (6.4) possesses the asymptotic expansion (4.15). 
Hence the expression (6.4) for u,* has the asymptotic expansion (cf. equation 

877(u2), N p-l[ - 4g23 sin 8 cos 6 - 4g32 sin 8 cos 8 + 2g2,( 1 - 2 cos2 6 )  

(4.15)) 

+ 2g,,(l - 2 sin20)] +lnp 

+Sn(V7,mcos6+ V,*sinO) , (6.5a) I 
8n(u,*), N p-l[2g2, - Zg,,] +Inp [ - 2 ar, a912 sin 8 + 2 

( -In 4-  21n e + 2 )  

+87r(-V~sin8+V',*cosO) , 1 (G.5b)  
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+ a933 - ( -In 4 - 2 In E + 2 + 2 sin2 6 )  + 8nV: ( 6 . 5 ~ )  
89.1 

where V* is a vector which is a function of rl only and is given by 

where r is the vector (rlt 0 , O ) .  Hence, following the analysis of Q 4, it is seen that 
gjk  is unaltered and is still given by (4.18). The flow field u; is taken to be the 
flow field produced by a line of forces fj(R1) acting at  the rl axis in the presence 
of the wall W .  Thus 

(6.7) 
1 fl 

( 4 ) i  = GJ fj(R1) [f& R)1 dR1, 
-1 

where fij(r, R) is the Green’s function defined above. Thus we write 

the integrand of the second integral possessing no singularity for r lying on the 
rl axis. It may be shown that the asymptotic expansion of u; as p -+ 0 is (cf. 
equation (4.23)) 

8n(uL), N 2 ( f 2  cos 6 +f3sin 6) (hi 2 +In E -1np + 1) 

\ (6.9) 
8 n ( ~ k ) ~  N 2( -f2sinB+f,cos8) (ln2+ln6-lnp) 

- f 2  sin 8 +f3 cos 6 dR 1 + n( - w; sin6+ w,* cos 8) )  

8n(u;), N 4f1(ln 2 +In E - lnp - 9 )  + 2 

where W* is given by 

where r is the vector (r l ,  0,O). We again expand f(Rl) in the form (4.25) and 
define Wz, W:, W;, ... to be the vector W* given by (6.10) with f(Rl) replaced 
respectively by f,(Rl), f,(Rl), f,(Rl), .... Thus W* may be expressed as 

+.... w; w; W“ = w;+- +- 
1nK (lnK)2 

(6.11) 
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As in $4,  the value off, must be given by 

(f,), = 0, (f,), = 4nDA dA/dr,, (fo)3 = 47rEA dhldr,. (6.12) 

However the flow field u,* + u,, has now the asymptotic expansion near p = 0 
of (cf. equation (4.32)) 

(uz), + (u,,), N p-l( - ZAA2 cos 28 - 2BA2 sin 28) + (2AdA/dr,) (D cos8 + E sin 0) 

( ~ . z * ) ~ + ( u , ~ ) ~  -p-1(-Ch2)-(V,*+W,*)sin8+(V,*+W~)cos8, 
(u,*), + (uz0), N p-l( - DA2 cos 8 - EA2 sin 8) 

-t- ( A  dA/dr,) (2B sin 28+ 2A cos 28) + (V,* + W?). I + ( V t  + W,*) cos 8 + (V,* + W,*) sin8, 

(6.13) 

Hence it may be shown that the inner flow field ii; is such that when expressed 
in outer variables (cf. equation (4.34)) 

(Ti;), N ( A  dA/dr,) (D cos 8 + E sin 0) + (7; + W;) cos 8 
+(V,*+ W,*)sin8, 

(6.14) 

(VL), N (V,* + WT). 
Thus, taking 

( ~ 4 ) ~  = H{ 1 - A2p-, - 2 In @/A) )  cos 8 

( ~ 4 ) ~  = H(1- A2p-2 + 2 In @ / A ) )  sin 8 
+ K{ 1 - A2p-2 - 2 In @ / A ) )  sin 8, 

+ K{ - 1 + A2p-2 - 2 In (p/h)) cos 8, 

(Q, = Lln (p/h) ,  
where H, K and L are of the form 

(6.15) 

(6.16) 

it may be shown that ii; expressed relative to outer variables is 

(6.17) 

(ZJ, = (2H1cos8+2K,sin8)+ (l/ln~K){(2H~+H~-2H~ln(p/A))cos0 

(ZJs = ( -2H,sin8+2Klcos8)+(l/ln~){( -2H, 

(u;), = - L, + ( l/ln K) ( - L, + L, In ( p / h ) )  + . . . . 

+ (2K, +K,- 2K,ln (plh)) sin81 + . .., 

+ Hl+2H,ln(p/h))sin8 + (2K,-K,-2Kl1n(p/A)) cos0)+ ..., 

Hence by (6.14), it is seen that the values of H,, K ,  and L, are 

(6.18) 
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where it has been noted that W* is given by the expression (6.11). The asymptotic 
form of u2, for p -+ 0 is now given by (cf. equation (4.40)) 

8n(u,,), N lnpf - 2(f1), cos 8 - 2(fJ3 sin 8} + { - 2(f1), cos 8 - 2(f1), sin e} 

+ 8n{( W 3 ,  cos 8 + ( W 3 ,  sin 81, (6 .19~)  

8n(u,,), N In p{2(fl), sin 0 - 2(f1)3 cos 6)  + (2(f1), sin8 - 2(f& cos 61 ( - 2In 2 - 111 F )  

(6.19b) 

(6.19~) 

The matching of the terms involving lnp gives 

(fi)l = - $L1- 8 ~ 9  (f1)2 = Hi. 8n9 ( f i ) 3  = K1.87~. (6.20) 

Continuing the matching process the values of H2, K ,  and L, may be obtained as 

K ,  = K,( Q - In h + In 2 + In F )  + *( W f ) ,  + __ 

L, = L,( - Q -In h + In 2 + In e) - ( 

and the value of f, as 

(fill = - 2nrL2, (f2)2 = 8TH2, (f2)3 = 8nK2* (6.22) 

Thus it is seen that the velocity field in the outer expansion is given by (5.7), 
where U is the undisturbed flow (5.8) and where uz is the flow 

produced by a line of force doublets in the presence of W ,  where gik(Rl) is the 

2A (2; C)) . (6.24) 

matrix 0 

0 (2B+C) -2A 

The remaining flow field K ~ ( u ~ ~  + (u,,/ln K )  + (u,,/(ln K),)}  in (5.7) is given by 

which is a flow produced by a line of force. The quantities (f&, (f& and (f& are 
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where L,, H,, K,, L,, H, and K ,  are given by 

(6.27) 

\ 

i L, = - v; - (W,*),, 

Hl = *{(A dA/drl)D + v,* + (W,*),}, 

K ,  = +{(A dh/dr,) E + V,* + (W:),}, 

L, = {VF + (W:),} (4 + lnh -1n2 -In e )  - ( W;), 

H2 = ${(A dhldr,) D + V': + ( W,*),> ( $ - In h + In 2 + In 8 )  + 4( W; ), 
(6.28) 

dR,, { ( A  dhldr,) D + T'; + ( W,*),} +: [f"r' +jr::.) Irl-RlI 

K ,  = t{(hdA/dr,)  E+ V,* + ( W,*),} (g-lnh +ln 2+1ne) + +( WT), 

the values of the vectors V*, W,* and WT being given by 

the vector r being put equal to (r,, 0 , O )  in each of these integrals. 

'$2 per unit length acting on it, where 
The forces acting on the body are therefore equivalent to a force 9 and a couple 

(6.30) 

The total force F and torque G acting on the body about the origin are given by 

(6.31) 
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These equations give, for the force F, 

and, for the torque G,  

G 1 / h  = Z~ 1 Z C / + ~ A ~  dr,, 
-1 

(6.32) 

(6.33) 

where L,, H,, K,, L,, H2 and K, are given above by (6.27) and (6.28). 

reduce to the results given at the end of $5. 
When there is no wall present, then V* = W,* = WT = 0 and (6.32) and (6.33) 

7. Resistance to axial rotation 
In this and the next two sections, the results given in § 5 for the force and 

torque on a long slender body will be used to examine special cases. 
Consider first a long slender body which is rotating with a dimensionless 

angular velocity of unity about the rl axis. The fluid in which such a body is 
immersed is assumed to be unbounded and at  rest at  infinity. The disturbance 
produced by the body and the forces acting on the body are the same as would be 
produced by taking the body at  rest in a fluid undergoing a motion U(r) given by 

up = 0,  u, = -p, u, = 0. 
Thus in (2.7) one has 

A = B = D = E = 0, C = - 1 .  

Hence by equations (5.18), (5.22) and (5.23), it is seen that the force F and torque 
G acting on the body are given by 

F = 0 and G = (?), (7.3) 

where (7.4) 

Thus in dirnensionaZ variables it is seen that the couple acting on a body rotating 
with angular velocity w is 

G, = - 4n,uaazw/ h2drl 
+1 

-1 

= - 4pwv, 

where V is the volume of the body and ,u the viscosity of thelfluid. 
(7.5) 
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Although the results given in $ 5  were derived for bodies with 'sharp ends' 
for which A(r,) is a continuous function satisfying A( - 1) = A( + 1) = 0, it may 
be seen that the present result (7.5) for rotational resistance is valid for blunt- 
ended bodies (such as a circular cylinder of finite length) since the effect of the 
ends is to alter the value of the couple by an amount of order (pb3w) which is 
much smaller than that given by ( 7 . 5 )  for the total couple. Thus one may expect 
this equation (7.5) to be valid for bodies for which h(r,) is piecewise continuous 
with a finite number of discontinuities. 

8. Force and torque on body in shear 
Consider an undisturbed shear flow U(r) given by 

Up = U, = 0,  U, = psin 8, (8.1) 

(8.2) 

which is the flow field (2.7) with 

A = B = C = D = 0, E = 1. 

In  this flow a long slender body is considered held at  rest with its axis in the rl 
direction. The hydrodynamic force F and torque G acting on the body are now 
calculated using equations (5.22) and (5.23) for the cases in which the shape of 
the body is (i) a double cone and (ii) an ellipsoid of revolution. 

(i) A double cone 

If the body shape is a double cone (see figure 5 (a) )  given by 

A(r,) = 1 + (rl/a) for -a < rl 6 0, 

= 1 - r ,  for 0 < r1 6 1, 

then it may readily be shown that if -a < rl 6 0 

+ a-l( 1 + a - 1 ~ ~ )  In (rl + a )  + (r,  - 1 )  In (1 - rl )  

+ (1  - a-1 - 2a-2r1), (8.4~) 
and if 0 6 rl < 1 

= - 2(r, - 1) Ins+ ( - 1 - a-l- a-2r1 + r l )  lnr, 

+ a-l( 1 + a-lr,) In (r ,  + a )  + (r ,  - 1 ) ln (1 - r,) 

( A  dA/dR,) dRl 

+ (1 - a-1 - 2r1). (8.4 b )  

Substituting thesevalues into(5.22)and making use of (8.2), one obtains thevalue 
of the force F on the body as F, = F, = 0, 

F3/8n = - [K2/(ln K ) ~ ] .  ${a( 1 + a)21n a+ *(a-2- 1) (1  + a ) , h  (1 +a) + $(a-  a-I)}. 

Similarly, the value of the torque G on the body about the origin is obtained by 
substituting the values (8.4) into (5.23) and by making use of (8.2) and (8.3). 

(8.5) 

Thus G, = G, = 0, 
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G,/8n = - [K2/ln K]  . &( 1 + a) - [K2/(ln ~ ) 2 ]  . &[( 2a3 + 3012 + a) In a! 

+ (-  2a3- 3a2+ a+ 1 - 3a-1 - 2a-2)ln (1 +a) + 21n 2(1 +a) 
+ (2a2-t a f 1 + Za-l)]. (8.6) 

Thus, if the magnitude of the shear is y ,  the dimensional force and torque may be 
written as Fl = F2 = 0, 

F3 = - [ , ~ b ~ y / ( l n a / b ) ~ ]  n{( 1 + a)2lna + (a-2- 1) (1 + a)2ln (1 +a) + (a - a-I)}, 

(8.7) 

and G, = G3 = 0, G, = $npab2y( 1 +a)/@ (a/b)  -t c], (8.8) 

FIGURE 5. (a) Double cone in shear flow. (b) Ellipsoid of revolution in shear flow, 

where C is a constant given by 

C = ${(2a2+ a) In a + ( - 2a2- a + 2 - a-l- 2a-2) In (1 + a)  

+ 2 In 2 + (2a - 1 + 2a-l)}. (8.9) 
(ii) An ellipsoid 

Consider a body of ellipsoidal shape (figure 5 ( b ) )  given by 

h(r,) = -t-(l-r:)+ ( - 1  < rl 6 +I).  (8.10) 

By direct substitution it may then be shown that 

= 2r, In 8 + 2r, - r,ln (1 - r:) (8.11) 
( A  dh/dR,) dR, 

for - 1 < r1 < + 1. The substitution of this expression into (5.22) gives the total 

F = O  (8.12) force F on the body as 

whilst substitution into (5.23) gives the total torque G about the origin as 

GI = 6 3  = 0, 

G2/8n = - Q[~~/ ln  K ]  - ( - Q + Q In 2) [K2/(ln K),] .  (8.13) 
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The dimensional force and torque on the body may therefore be written in the 

form F = O  (8.14) 

and G, = G3 = 0, 

G, = &i-pab2y/[(ln a/b) + (In 2 - $)I. (8.15) 

It should be noted that, for the body whose shape is a double cone, there is 
in general a total force acting on it across the flow in the r3 direction (see equation 
(8.7)). For example, if a = Q, then the force F on the double cone is 

Fl = F2 = 0, 

F3 = + 1.013pb2y/(lna/b)2. (8.16) 

However, for the symmetric double cone (a = 1) and for the ellipsoid there is zero 
force on the body. In  general it may be shown from (5.22) that there is zero totaI 
force on any such axisymmetric body which possesses fore-aft symmetry, a result 
which may also readily be demonstrated by considerations of symmetry alone. 

The general results (5.22) and (5.23) for the shear flow (8.1) always give the 
dimensional force and couple on a body in the form 

Fl = I?, = 0) 

F3 = 2rrKlpbZy/(ln a/b)2, 

and Gl = G,  = 0, 

(8.17) 

(8.18) 

where K,, K ,  and K, are constants given by 

+1 

. -1 K ,  = + 1 h2drl, 
- -  

K3 = - (1 +In 2 +In e)!::Azdrl + S + l h z l n h  -1 dr, 

+ [(S”-‘+/+l } ( A d A / d R l ) d R l ]  rldrl. (8.19) 
-1 -1 Tlf ‘  Irl-RlI 

These results are valid for bodies for which h(r,) is a continuous function taking 
the value zero at  the ends of the body. They are not valid for blunt-ended bodies 
(such as a circular cylinder of finite length) since the effect of the ends is to give 
a force on the body of order (pb2y) and a torque on the body about the origin 
of order (pab2y) which are larger than the values given by (8.18). Thus for blunt- 
ended bodies with fore-aft symmetry in shear flow given by (8.1) [for which 
F = 01 one would expect the total torque on the body to be given by 

G, = G, = 0, 
G, = Lpab2y, 

(8.20) 

where L is a constant which depends critically upon the shape of the blunt ends 
of the body. 
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9. Equivalent axis ratio 
The motion of an axially symmetric body with fore-aft symmetry in shear 

flow is given by (1.2) and (1.3). This motion is determined by the initial con- 
ditions and also by the value of a single constant re which is dependent ody  
upon the body shape. It was shown in $ 1  that 

re = (G'/G)*, (9.1) 

where G' and G" are the couples exerted on the body when it is held at  rest in a 
shear flow with its axis respectively across and in the direction of the flow. For 
sharp-ended bodies for which h(r,) is continuous and takes a value of zero at  the 
body ends, it is seen from 9 8 that 

where K ,  and K,  are given by (8.19). Also from the general results given by Cox 
(1970) for a long slender body it may readily be shown that the value of G' is 

where K ,  is a constant given by 

(9.3) 

Substituting the values of G and G' given by (9.2) and (9.3) in (9.1) and expanding 
in powers of l / ( lna /b) ,  one obtains 

where p and q are constants given by 

(9.5) 

thevalues of K,, K ,  and K ,  being given by (8.19) and (9.4). It is to be noted that, 
since the volume V of the body is given by 

h2drl = TabZK,, (9.7) 

the above expression (9.6) for the constant p may be written as 

p = ($ab2/V)t. (9.8) 

The ratio of the equivalent axis ratio to the true axis ratio (i.e. r,/(a/b)) is seen by 
(9.5) to tend to a constant value p as alb -+ co for the sharp-ended bodies con- 
sidered here (i.e. bodies with h(r,) continuous and A( - 1) = A( + 1) = 0). Whether 
this ratio increases or decreases to this limiting value depends upon the sign of 
the constant q. 
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As an example consider the double cone described by (8.3) with a = 1 so that 
it possesses fore-aft symmetry. Then by comparing equations (9.2) and (8.6) 
it is seen that for this case the values of K, and K, are 

K 2 = $ ,  K3=Qln2-1. (9.9) 

K, = -2h.2. (9.10) 

Also the vaIue of K4 given by (9.4) is for the present case 

0.3 
1 .o 10 100 1000 

alb 

FIGURE 6. The ratio of equivalent axis ratio (T,)  to truc axis ratio (a /b)  as a function of true 
axis ratio for (A) a double cone, (B) anellipsoid, and(C) a cylinder of finite longth. Theopen 
circles represent the experimental values for a cylinder of finite length obtained by 
Anczrrrowski & Mason (1  968). Tho line represents the asymptotic value for large 
values of a/b for a double cone (case A). 

so that the expression (9.5) for the equivalent axis ratio re becomes 

0.4097 
re,/(:) = 1*414-- 

Ina/b * 
(9.12) 

Similarly, for an ellipsoid given by 

A(?-,) = i- (1 - r;)*, 

the values of K,, K, and K ,  are 

K, = $, K ,  = 3-$ln2, K, = i - ln2,  (9.13) 

so that p =  1 and q = O .  (9.14) 

Therefore re/(a/b) = 1. (9.15) 

This result also follows immediately from the definition of the equivalent axis 
ratio ye (see 9 1). The values of r,,,(u/b) in terms of (a/b) derived from (9.12) and 
(9.15) for the double cone and ellipsoid are given graphically in figure 6. In $ 8  
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it was suggested that for blunt-ended bodies (or more generally bodies for 
which h(rJ is piecewise continuous with a finite number of discontinuities in 
- 1 < rl < 1) such as a cylinder of finite length the value of G" is no longer given 
by (9.2) but is instead given by 

G" = Lpab'y, (9.16) 

where L is a constant (see equation (8.20)). Since G' is still given by (9.3) it 
follows that the value of the equivalent axis ratio re is given by 

8n + 
re / ( ; )  = (5) (lna/b)-k (9.17) 

Experimental values of re/(+) for different (a/b) for a finite circular cylinder 
are given by Anczurowski & Mason (1  968). These are shown in figure 6 and are 
compared with the values given by (9.17) with the constant L put equal to 5.45. 
This value seems to give the best agreement between theory and experiment, 
(9.17) then having the form 

re/(a/b) = 1-24(ha/b)-4. (9.18) 

The equation (9.16) for the couple Gff then becomes 

G" = 5.45pab2y, (9.19) 

so that when the cylinder is aligned with the flow its ends have a force acting 
on them (see 3 8) across the flow of magnitude 2.72pb2y. 
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